5 resultados para Extensions
em Collection Of Biostatistics Research Archive
Resumo:
Motivation: Gene Set Enrichment Analysis (GSEA) has been developed recently to capture moderate but coordinated changes in the expression of sets of functionally related genes. We propose number of extensions to GSEA, which uses different statistics to describe the association between genes and phenotype of interest. We make use of dimension reduction procedures, such as principle component analysis to identify gene sets containing coordinated genes. We also address the problem of overlapping among gene sets in this paper. Results: We applied our methods to the data come from a clinical trial in acute lymphoblastic leukemia (ALL) [1]. We identified interesting gene sets using different statistics. We find that gender may have effects on the gene expression in addition to the phenotype effects. Investigating overlap among interesting gene sets indicate that overlapping could alter the interpretation of the significant results.
Resumo:
When different markers are responsive to different aspects of a disease, combination of multiple markers could provide a better screening test for early detection. It is also resonable to assume that the risk of disease changes smoothly as the biomarker values change and the change in risk is monotone with respect to each biomarker. In this paper, we propose a boundary constrained tensor-product B-spline method to estimate the risk of disease by maximizing a penalized likelihood. To choose the optimal amount of smoothing, two scores are proposed which are extensions of the GCV score (O'Sullivan et al. (1986)) and the GACV score (Ziang and Wahba (1996)) to incorporate linear constraints. Simulation studies are carried out to investigate the performance of the proposed estimator and the selection scores. In addidtion, sensitivities and specificities based ona pproximate leave-one-out estimates are proposed to generate more realisitc ROC curves. Data from a pancreatic cancer study is used for illustration.
Resumo:
In estimation of a survival function, current status data arises when the only information available on individuals is their survival status at a single monitoring time. Here we briefly review extensions of this form of data structure in two directions: (i) doubly censored current status data, where there is incomplete information on the origin of the failure time random variable, and (ii) current status information on more complicated stochastic processes. Simple examples of these data forms are presented for motivation.
Resumo:
We propose a novel class of models for functional data exhibiting skewness or other shape characteristics that vary with spatial or temporal location. We use copulas so that the marginal distributions and the dependence structure can be modeled independently. Dependence is modeled with a Gaussian or t-copula, so that there is an underlying latent Gaussian process. We model the marginal distributions using the skew t family. The mean, variance, and shape parameters are modeled nonparametrically as functions of location. A computationally tractable inferential framework for estimating heterogeneous asymmetric or heavy-tailed marginal distributions is introduced. This framework provides a new set of tools for increasingly complex data collected in medical and public health studies. Our methods were motivated by and are illustrated with a state-of-the-art study of neuronal tracts in multiple sclerosis patients and healthy controls. Using the tools we have developed, we were able to find those locations along the tract most affected by the disease. However, our methods are general and highly relevant to many functional data sets. In addition to the application to one-dimensional tract profiles illustrated here, higher-dimensional extensions of the methodology could have direct applications to other biological data including functional and structural MRI.
Resumo:
Granger causality (GC) is a statistical technique used to estimate temporal associations in multivariate time series. Many applications and extensions of GC have been proposed since its formulation by Granger in 1969. Here we control for potentially mediating or confounding associations between time series in the context of event-related electrocorticographic (ECoG) time series. A pruning approach to remove spurious connections and simultaneously reduce the required number of estimations to fit the effective connectivity graph is proposed. Additionally, we consider the potential of adjusted GC applied to independent components as a method to explore temporal relationships between underlying source signals. Both approaches overcome limitations encountered when estimating many parameters in multivariate time-series data, an increasingly common predicament in today's brain mapping studies.