2 resultados para Explicit criteria

em Collection Of Biostatistics Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The affected sib/relative pair (ASP/ARP) design is often used with covariates to find genes that can cause a disease in pathways other than through those covariates. However, such "covariates" can themselves have genetic determinants, and the validity of existing methods has so far only been argued under implicit assumptions. We propose an explicit causal formulation of the problem using potential outcomes and principal stratification. The general role of this formulation is to identify and separate the meaning of the different assumptions that can provide valid causal inference in linkage analysis. This separation helps to (a) develop better methods under explicit assumptions, and (b) show the different ways in which these assumptions can fail, which is necessary for developing further specific designs to test these assumptions and confirm or improve the inference. Using this formulation in the specific problem above, we show that, when the "covariate" (e.g., addiction to smoking) also has genetic determinants, then existing methods, including those previously thought as valid, can declare linkage between the disease and marker loci even when no such linkage exists. We also introduce design strategies to address the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion (AIC) have been used, based either on the marginal or on the conditional distribution. We show that the marginal AIC is no longer an asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models without random effects. For the conditional AIC, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that leads to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional AIC, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.