1 resultado para Equations of state (EoS) models
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (39)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- Biodiversity Heritage Library, United States (9)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (50)
- Brock University, Canada (14)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (63)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (49)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (4)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (86)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (44)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (9)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (24)
- Universidade do Minho (4)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (20)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (3)
- University of Michigan (366)
- University of Queensland eSpace - Australia (19)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
An important aspect of the QTL mapping problem is the treatment of missing genotype data. If complete genotype data were available, QTL mapping would reduce to the problem of model selection in linear regression. However, in the consideration of loci in the intervals between the available genetic markers, genotype data is inherently missing. Even at the typed genetic markers, genotype data is seldom complete, as a result of failures in the genotyping assays or for the sake of economy (for example, in the case of selective genotyping, where only individuals with extreme phenotypes are genotyped). We discuss the use of algorithms developed for hidden Markov models (HMMs) to deal with the missing genotype data problem.