1 resultado para Electric Car
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (55)
- CentAUR: Central Archive University of Reading - UK (34)
- Center for Jewish History Digital Collections (20)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (114)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (32)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons - Montana Tech (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (4)
- DRUM (Digital Repository at the University of Maryland) (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (6)
- Greenwich Academic Literature Archive - UK (9)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (102)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (9)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (18)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (9)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (87)
- Queensland University of Technology - ePrints Archive (136)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (117)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (4)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Michigan (3)
- WestminsterResearch - UK (1)
Resumo:
We consider nonparametric missing data models for which the censoring mechanism satisfies coarsening at random and which allow complete observations on the variable X of interest. W show that beyond some empirical process conditions the only essential condition for efficiency of an NPMLE of the distribution of X is that the regions associated with incomplete observations on X contain enough complete observations. This is heuristically explained by describing the EM-algorithm. We provide identifiably of the self-consistency equation and efficiency of the NPMLE in order to make this statement rigorous. The usual kind of differentiability conditions in the proof are avoided by using an identity which holds for the NPMLE of linear parameters in convex models. We provide a bivariate censoring application in which the condition and hence the NPMLE fails, but where other estimators, not based on the NPMLE principle, are highly inefficient. It is shown how to slightly reduce the data so that the conditions hold for the reduced data. The conditions are verified for the univariate censoring, double censored, and Ibragimov-Has'minski models.