1 resultado para Efficient edge dominating set
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (5)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (12)
- Center for Jewish History Digital Collections (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (23)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (52)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (189)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (19)
- Queensland University of Technology - ePrints Archive (461)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (19)
- Universidade Complutense de Madrid (3)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (4)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Simulation-based assessment is a popular and frequently necessary approach to evaluation of statistical procedures. Sometimes overlooked is the ability to take advantage of underlying mathematical relations and we focus on this aspect. We show how to take advantage of large-sample theory when conducting a simulation using the analysis of genomic data as a motivating example. The approach uses convergence results to provide an approximation to smaller-sample results, results that are available only by simulation. We consider evaluating and comparing a variety of ranking-based methods for identifying the most highly associated SNPs in a genome-wide association study, derive integral equation representations of the pre-posterior distribution of percentiles produced by three ranking methods, and provide examples comparing performance. These results are of interest in their own right and set the framework for a more extensive set of comparisons.