1 resultado para Ding Kiln
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (5)
- Academic Research Repository at Institute of Developing Economies (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (55)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (20)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (5)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (6)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (10)
- DigitalCommons@The Texas Medical Center (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (10)
- Dokumentenserver der Akademie der Wissenschaften zu Göttingen (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (32)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (29)
- Instituto Politécnico do Porto, Portugal (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (22)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (15)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (13)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (63)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (3)
- Universidade do Minho (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (48)
- Université de Montréal, Canada (2)
- University of Michigan (125)
- University of Queensland eSpace - Australia (59)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
The advances in computational biology have made simultaneous monitoring of thousands of features possible. The high throughput technologies not only bring about a much richer information context in which to study various aspects of gene functions but they also present challenge of analyzing data with large number of covariates and few samples. As an integral part of machine learning, classification of samples into two or more categories is almost always of interest to scientists. In this paper, we address the question of classification in this setting by extending partial least squares (PLS), a popular dimension reduction tool in chemometrics, in the context of generalized linear regression based on a previous approach, Iteratively ReWeighted Partial Least Squares, i.e. IRWPLS (Marx, 1996). We compare our results with two-stage PLS (Nguyen and Rocke, 2002A; Nguyen and Rocke, 2002B) and other classifiers. We show that by phrasing the problem in a generalized linear model setting and by applying bias correction to the likelihood to avoid (quasi)separation, we often get lower classification error rates.