2 resultados para Design and selection
em Collection Of Biostatistics Research Archive
Resumo:
High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been on assessing univariate associations between gene expression with clinical outcome (variable selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable selection/classification approach that is based on linear combinations of the gene expression profiles that maximize an accuracy measure summarized using the receiver operating characteristic curve. Under a specific probability model, this leads to consideration of linear discriminant functions. We incorporate an automated variable selection approach using LASSO. An equivalence between LASSO estimation with support vector machines allows for model fitting using standard software. We apply the proposed method to simulated data as well as data from a recently published prostate cancer study.
Resumo:
Common goals in epidemiologic studies of infectious diseases include identification of the infectious agent, description of the modes of transmission and characterization of factors that influence the probability of transmission from infected to uninfected individuals. In the case of AIDS, the agent has been identified as the Human Immunodeficiency Virus (HIV), and transmission is known to occur through a variety of contact mechanisms including unprotected sexual intercourse, transfusion of infected blood products and sharing of needles in intravenous drug use. Relatively little is known about the probability of IV transmission associated with the various modes of contact, or the role that other cofactors play in promoting or suppressing transmission. Here, transmission probability refers to the probability that the virus is transmitted to a susceptible individual following exposure consisting of a series of potentially infectious contacts. The infectivity of HIV for a given route of transmission is defined to be the per contact probability of infection. Knowledge of infectivity and its relationship to other factors is important in understanding the dynamics of the AIDS epidemic and in suggesting appropriate measures to control its spread. The primary source of empirical data about infectivity comes from sexual partners of infected individuals. Partner studies consist of a series of such partnerships, usually heterosexual and monogamous, each composed of an initially infected "index case" and a partner who may or may not be infected by the time of data collection. However, because the infection times of both partners may be unknown and the history of contacts uncertain, any quantitative characterization of infectivity is extremely difficult. Thus, most statistical analyses of partner study data involve the simplifying assumption that infectivity is a constant common to all partnerships. The major objectives of this work are to describe and discuss the design and analysis of partner studies, providing a general statistical framework for investigations of infectivity and risk factors for HIV transmission. The development is largely based on three papers: Jewell and Shiboski (1990), Kim and Lagakos (1990), and Shiboski and Jewell (1992).