4 resultados para Defeasible conditional

em Collection Of Biostatistics Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion (AIC) have been used, based either on the marginal or on the conditional distribution. We show that the marginal AIC is no longer an asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models without random effects. For the conditional AIC, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that leads to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional AIC, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade’s worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show RNA-seq data demonstrates unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find GC-content has a strong sample specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here we describe statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization (CQN) algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content, and quantile normalization to correct for global distortions.