19 resultados para Data Modeling

em Collection Of Biostatistics Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genomic alterations have been linked to the development and progression of cancer. The technique of Comparative Genomic Hybridization (CGH) yields data consisting of fluorescence intensity ratios of test and reference DNA samples. The intensity ratios provide information about the number of copies in DNA. Practical issues such as the contamination of tumor cells in tissue specimens and normalization errors necessitate the use of statistics for learning about the genomic alterations from array-CGH data. As increasing amounts of array CGH data become available, there is a growing need for automated algorithms for characterizing genomic profiles. Specifically, there is a need for algorithms that can identify gains and losses in the number of copies based on statistical considerations, rather than merely detect trends in the data. We adopt a Bayesian approach, relying on the hidden Markov model to account for the inherent dependence in the intensity ratios. Posterior inferences are made about gains and losses in copy number. Localized amplifications (associated with oncogene mutations) and deletions (associated with mutations of tumor suppressors) are identified using posterior probabilities. Global trends such as extended regions of altered copy number are detected. Since the posterior distribution is analytically intractable, we implement a Metropolis-within-Gibbs algorithm for efficient simulation-based inference. Publicly available data on pancreatic adenocarcinoma, glioblastoma multiforme and breast cancer are analyzed, and comparisons are made with some widely-used algorithms to illustrate the reliability and success of the technique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple outcomes data are commonly used to characterize treatment effects in medical research, for instance, multiple symptoms to characterize potential remission of a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is evaluated. Such a treatment effect may over generalize the effect across the outcomes. On the other hand individual treatment effects, varying across all outcomes, are complicated to interpret, and their estimation may lose precision relative to a global summary. An effective compromise to summarize the treatment effect may be through patterns of the treatment effects, i.e. "differentiated effects." In this paper we propose a two-category model to differentiate treatment effects into two groups. A model fitting algorithm and simulation study are presented, and several methods are developed to analyze heterogeneity presenting in the treatment effects. The method is illustrated using an analysis of schizophrenia symptom data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a novel class of models for functional data exhibiting skewness or other shape characteristics that vary with spatial or temporal location. We use copulas so that the marginal distributions and the dependence structure can be modeled independently. Dependence is modeled with a Gaussian or t-copula, so that there is an underlying latent Gaussian process. We model the marginal distributions using the skew t family. The mean, variance, and shape parameters are modeled nonparametrically as functions of location. A computationally tractable inferential framework for estimating heterogeneous asymmetric or heavy-tailed marginal distributions is introduced. This framework provides a new set of tools for increasingly complex data collected in medical and public health studies. Our methods were motivated by and are illustrated with a state-of-the-art study of neuronal tracts in multiple sclerosis patients and healthy controls. Using the tools we have developed, we were able to find those locations along the tract most affected by the disease. However, our methods are general and highly relevant to many functional data sets. In addition to the application to one-dimensional tract profiles illustrated here, higher-dimensional extensions of the methodology could have direct applications to other biological data including functional and structural MRI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functional neuroimaging techniques enable investigations into the neural basis of human cognition, emotions, and behaviors. In practice, applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric,neurological, and substance abuse disorders, as well as into the neural responses to their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. One may also extend voxel-level analyses by simultaneously considering the ensemble of voxels constituting an anatomically defined region of interest (ROI) or by considering means or quantiles of the ROI. In this work we present a Bayesian extension of voxel-level analyses that offers several notable benefits. First, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance for regional mean parameters allows for the study of inter-regional functional connectivity, provided enough subjects are available to allow for accurate estimation. Finally, an exchangeable correlation structure within regions allows for the consideration of intra-regional functional connectivity. We perform estimation for our model using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling which, despite the high throughput nature of the data, can be executed quickly (less than 30 minutes). We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease. The unifying hierarchical model presented in this manuscript is shown to enhance the interpretation content of these data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many seemingly disparate approaches for marginal modeling have been developed in recent years. We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the proposed copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimation of breastmilk infectivity in HIV-1 infected mothers is difficult because transmission can occur while the fetus is in-utero, during delivery, or through breastfeeding. Since transmission can only be detected through periodic testing, however, it may be impossible to determine the actual mode of transmission in any individual child. In this paper we develop a model to estimate breastmilk infectivity as well as the probabilities of in-utero and intrapartum transmission. In addition, the model allows separate estimation of early and late breastmilk infectivity and individual variation in maternal infectivity. Methods for hypothesis testing of binary risk factors and a method for assessing goodness of fit are also described. Data from a randomized trial of breastfeeding versus formula feeding among HIV-1 infected mothers in Nairobi, Kenya are used to illustrate the methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In biostatistical applications interest often focuses on the estimation of the distribution of a time-until-event variable T. If one observes whether or not T exceeds an observed monitoring time at a random number of monitoring times, then the data structure is called interval censored data. We extend this data structure by allowing the presence of a possibly time-dependent covariate process that is observed until end of follow up. If one only assumes that the censoring mechanism satisfies coarsening at random, then, by the curve of dimensionality, typically no regular estimators will exist. To fight the curse of dimensionality we follow the approach of Robins and Rotnitzky (1992) by modeling parameters of the censoring mechanism. We model the right-censoring mechanism by modeling the hazard of the follow up time, conditional on T and the covariate process. For the monitoring mechanism we avoid modeling the joint distribution of the monitoring times by only modeling a univariate hazard of the pooled monitoring times, conditional on the follow up time, T, and the covariates process, which can be estimated by treating the pooled sample of monitoring times as i.i.d. In particular, it is assumed that the monitoring times and the right-censoring times only depend on T through the observed covariate process. We introduce inverse probability of censoring weighted (IPCW) estimator of the distribution of T and of smooth functionals thereof which are guaranteed to be consistent and asymptotically normal if we have available correctly specified semiparametric models for the two hazards of the censoring process. Furthermore, given such correctly specified models for these hazards of the censoring process, we propose a one-step estimator which will improve on the IPCW estimator if we correctly specify a lower-dimensional working model for the conditional distribution of T, given the covariate process, that remains consistent and asymptotically normal if this latter working model is misspecified. It is shown that the one-step estimator is efficient if each subject is at most monitored once and the working model contains the truth. In general, it is shown that the one-step estimator optimally uses the surrogate information if the working model contains the truth. It is not optimal in using the interval information provided by the current status indicators at the monitoring times, but simulations in Peterson, van der Laan (1997) show that the efficiency loss is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In biostatistical applications, interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed monitoring time, then the data is described by the well known singly-censored current status model, also known as interval censored data, case I. We extend this current status model by allowing the presence of a time-dependent process, which is partly observed and allowing C to depend on T through the observed part of this time-dependent process. Because of the high dimension of the covariate process, no globally efficient estimators exist with a good practical performance at moderate sample sizes. We follow the approach of Robins and Rotnitzky (1992) by modeling the censoring variable, given the time-variable and the covariate-process, i.e., the missingness process, under the restriction that it satisfied coarsening at random. We propose a generalization of the simple current status estimator of the distribution of T and of smooth functionals of the distribution of T, which is based on an estimate of the missingness. In this estimator the covariates enter only through the estimate of the missingness process. Due to the coarsening at random assumption, the estimator has the interesting property that if we estimate the missingness process more nonparametrically, then we improve its efficiency. We show that by local estimation of an optimal model or optimal function of the covariates for the missingness process, the generalized current status estimator for smooth functionals become locally efficient; meaning it is efficient if the right model or covariate is consistently estimated and it is consistent and asymptotically normal in general. Estimation of the optimal model requires estimation of the conditional distribution of T, given the covariates. Any (prior) knowledge of this conditional distribution can be used at this stage without any risk of losing root-n consistency. We also propose locally efficient one step estimators. Finally, we show some simulation results.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately