4 resultados para Cumulative Enhanced Model

em Collection Of Biostatistics Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed models and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated margional residual vector by the Cholesky decomposition of the inverse of the estimated margional variance matrix. The resulting "rotated" residuals are used to construct an empirical cumulative distribution function and pointwise standard errors. The theoretical framework, including conditions and asymptotic properties, involves technical details that are motivated by Lange and Ryan (1989), Pierce (1982), and Randles (1982). Our method appears to work well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series). Our methods can produce satisfactory results even for models that do not satisfy all of the technical conditions stated in our theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Receiver Operating Characteristic (ROC) curve is a prominent tool for characterizing the accuracy of continuous diagnostic test. To account for factors that might invluence the test accuracy, various ROC regression methods have been proposed. However, as in any regression analysis, when the assumed models do not fit the data well, these methods may render invalid and misleading results. To date practical model checking techniques suitable for validating existing ROC regression models are not yet available. In this paper, we develop cumulative residual based procedures to graphically and numerically assess the goodness-of-fit for some commonly used ROC regression models, and show how specific components of these models can be examined within this framework. We derive asymptotic null distributions for the residual process and discuss resampling procedures to approximate these distributions in practice. We illustrate our methods with a dataset from the Cystic Fibrosis registry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.