7 resultados para Comparative Effectiveness Research
em Collection Of Biostatistics Research Archive
Resumo:
When comparing a new treatment with a control in a randomized clinical study, the treatment effect is generally assessed by evaluating a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. In this paper, we show a systematic, effective way to identify a promising population, for which the new treatment is expected to have a desired benefit, using the data from a current study involving similar comparator treatments. Specifically, with the existing data we first create a parametric scoring system using multiple covariates to estimate subject-specific treatment differences. Using this system, we specify a desired level of treatment difference and create a subgroup of patients, defined as those whose estimated scores exceed this threshold. An empirically calibrated group-specific treatment difference curve across a range of threshold values is constructed. The population of patients with any desired level of treatment benefit can then be identified accordingly. To avoid any ``self-serving'' bias, we utilize a cross-training-evaluation method for implementing the above two-step procedure. Lastly, we show how to select the best scoring system among all competing models. The proposals are illustrated with the data from two clinical trials in treating AIDS and cardiovascular diseases. Note that if we are not interested in designing a new study for comparing similar treatments, the new procedure can also be quite useful for the management of future patients who would receive nontrivial benefits to compensate for the risk or cost of the new treatment.
Resumo:
DNA sequence copy number has been shown to be associated with cancer development and progression. Array-based Comparative Genomic Hybridization (aCGH) is a recent development that seeks to identify the copy number ratio at large numbers of markers across the genome. Due to experimental and biological variations across chromosomes and across hybridizations, current methods are limited to analyses of single chromosomes. We propose a more powerful approach that borrows strength across chromosomes and across hybridizations. We assume a Gaussian mixture model, with a hidden Markov dependence structure, and with random effects to allow for intertumoral variation, as well as intratumoral clonal variation. For ease of computation, we base estimation on a pseudolikelihood function. The method produces quantitative assessments of the likelihood of genetic alterations at each clone, along with a graphical display for simple visual interpretation. We assess the characteristics of the method through simulation studies and through analysis of a brain tumor aCGH data set. We show that the pseudolikelihood approach is superior to existing methods both in detecting small regions of copy number alteration and in accurately classifying regions of change when intratumoral clonal variation is present.
Resumo:
In many clinical trials to evaluate treatment efficacy, it is believed that there may exist latent treatment effectiveness lag times after which medical procedure or chemical compound would be in full effect. In this article, semiparametric regression models are proposed and studied to estimate the treatment effect accounting for such latent lag times. The new models take advantage of the invariance property of the additive hazards model in marginalizing over random effects, so parameters in the models are easy to be estimated and interpreted, while the flexibility without specifying baseline hazard function is kept. Monte Carlo simulation studies demonstrate the appropriateness of the proposed semiparametric estimation procedure. Data collected in the actual randomized clinical trial, which evaluates the effectiveness of biodegradable carmustine polymers for treatment of recurrent brain tumors, are analyzed.