2 resultados para Close-approach maneuvers
em Collection Of Biostatistics Research Archive
Resumo:
Assessments of environmental and territorial justice are similar in that both assess whether empirical relations between the spatial arrangement of undesirable hazards (or desirable public goods and services) and socio-demographic groups are consistent with notions of social justice, evaluating the spatial distribution of benefits and burdens (outcome equity) and the process that produces observed differences (process equity. Using proximity to major highways in NYC as a case study, we review methodological issues pertinent to both fields and discuss choice and computation of exposure measures, but focus primarily on measures of inequity. We present inequity measures computed from the empirically estimated joint distribution of exposure and demographics and compare them to traditional measures such as linear regression, logistic regression and Theil’s entropy index. We find that measures computed from the full joint distribution provide more unified, transparent and intuitive operational definitions of inequity and show how the approach can be used to structure siting and decommissioning decisions.
Resumo:
Medical errors originating in health care facilities are a significant source of preventable morbidity, mortality, and healthcare costs. Voluntary error report systems that collect information on the causes and contributing factors of medi- cal errors regardless of the resulting harm may be useful for developing effective harm prevention strategies. Some patient safety experts question the utility of data from errors that did not lead to harm to the patient, also called near misses. A near miss (a.k.a. close call) is an unplanned event that did not result in injury to the patient. Only a fortunate break in the chain of events prevented injury. We use data from a large voluntary reporting system of 836,174 medication errors from 1999 to 2005 to provide evidence that the causes and contributing factors of errors that result in harm are similar to the causes and contributing factors of near misses. We develop Bayesian hierarchical models for estimating the log odds of selecting a given cause (or contributing factor) of error given harm has occurred and the log odds of selecting the same cause given that harm did not occur. The posterior distribution of the correlation between these two vectors of log-odds is used as a measure of the evidence supporting the use of data from near misses and their causes and contributing factors to prevent medical errors. In addition, we identify the causes and contributing factors that have the highest or lowest log-odds ratio of harm versus no harm. These causes and contributing factors should also be a focus in the design of prevention strategies. This paper provides important evidence on the utility of data from near misses, which constitute the vast majority of errors in our data.