4 resultados para Circular Statistics
em Collection Of Biostatistics Research Archive
Resumo:
Motivation: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number (Olshen {\it et~al}, 2004). The algorithm tests for change-points using a maximal $t$-statistic with a permutation reference distribution to obtain the corresponding $p$-value. The number of computations required for the maximal test statistic is $O(N^2),$ where $N$ is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster. algorithm. Results: We present a hybrid approach to obtain the $p$-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analysis of array CGH data from a breast cancer cell line to show the impact of the new approaches on the analysis of real data. Availability: An R (R Development Core Team, 2006) version of the CBS algorithm has been implemented in the ``DNAcopy'' package of the Bioconductor project (Gentleman {\it et~al}, 2004). The proposed hybrid method for the $p$-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher.
Resumo:
Traditionally, the use of Bayes factors has required the specification of proper prior distributions on model parameters implicit to both null and alternative hypotheses. In this paper, I describe an approach to defining Bayes factors based on modeling test statistics. Because the distributions of test statistics do not depend on unknown model parameters, this approach eliminates the subjectivity normally associated with the definition of Bayes factors. For standard test statistics, including the _2, F, t and z statistics, the values of Bayes factors that result from this approach can be simply expressed in closed form.
Resumo:
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique which is commonly used to quantify changes in blood oxygenation and flow coupled to neuronal activation. One of the primary goals of fMRI studies is to identify localized brain regions where neuronal activation levels vary between groups. Single voxel t-tests have been commonly used to determine whether activation related to the protocol differs across groups. Due to the generally limited number of subjects within each study, accurate estimation of variance at each voxel is difficult. Thus, combining information across voxels in the statistical analysis of fMRI data is desirable in order to improve efficiency. Here we construct a hierarchical model and apply an Empirical Bayes framework on the analysis of group fMRI data, employing techniques used in high throughput genomic studies. The key idea is to shrink residual variances by combining information across voxels, and subsequently to construct an improved test statistic in lieu of the classical t-statistic. This hierarchical model results in a shrinkage of voxel-wise residual sample variances towards a common value. The shrunken estimator for voxelspecific variance components on the group analyses outperforms the classical residual error estimator in terms of mean squared error. Moreover, the shrunken test-statistic decreases false positive rate when testing differences in brain contrast maps across a wide range of simulation studies. This methodology was also applied to experimental data regarding a cognitive activation task.