2 resultados para Carrier Mothers
em Collection Of Biostatistics Research Archive
Resumo:
Mendelian models can predict who carries an inherited deleterious mutation of known disease genes based on family history. For example, the BRCAPRO model is commonly used to identify families who carry mutations of BRCA1 and BRCA2, based on familial breast and ovarian cancers. These models incorporate the age of diagnosis of diseases in relatives and current age or age of death. We develop a rigorous foundation for handling multiple diseases with censoring. We prove that any disease unrelated to mutations can be excluded from the model, unless it is sufficiently common and dependent on a mutation-related disease time. Furthermore, if a family member has a disease with higher probability density among mutation carriers, but the model does not account for it, then the carrier probability is deflated. However, even if a family only has diseases the model accounts for, if the model excludes a mutation-related disease, then the carrier probability will be inflated. In light of these results, we extend BRCAPRO to account for surviving all non-breast/ovary cancers as a single outcome. The extension also enables BRCAPRO to extract more useful information from male relatives. Using 1500 familes from the Cancer Genetics Network, accounting for surviving other cancers improves BRCAPRO’s concordance index from 0.758 to 0.762 (p = 0.046), improves its positive predictive value from 35% to 39% (p < 10−6) without impacting its negative predictive value, and improves its overall calibration, although calibration slightly worsens for those with carrier probability < 10%. Copyright c 2000 John Wiley & Sons, Ltd.
Resumo:
Estimation of breastmilk infectivity in HIV-1 infected mothers is difficult because transmission can occur while the fetus is in-utero, during delivery, or through breastfeeding. Since transmission can only be detected through periodic testing, however, it may be impossible to determine the actual mode of transmission in any individual child. In this paper we develop a model to estimate breastmilk infectivity as well as the probabilities of in-utero and intrapartum transmission. In addition, the model allows separate estimation of early and late breastmilk infectivity and individual variation in maternal infectivity. Methods for hypothesis testing of binary risk factors and a method for assessing goodness of fit are also described. Data from a randomized trial of breastfeeding versus formula feeding among HIV-1 infected mothers in Nairobi, Kenya are used to illustrate the methods.