1 resultado para Car fleet
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (14)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (30)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (12)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (9)
- Center for Jewish History Digital Collections (20)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (6)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (7)
- Infoteca EMBRAPA (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (18)
- National Center for Biotechnology Information - NCBI (4)
- Ohio University (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (13)
- Queensland University of Technology - ePrints Archive (349)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- Repositorio Institucional UNISALLE - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (21)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Michigan (290)
- University of Queensland eSpace - Australia (9)
- USA Library of Congress (1)
- WestminsterResearch - UK (2)
Resumo:
We consider nonparametric missing data models for which the censoring mechanism satisfies coarsening at random and which allow complete observations on the variable X of interest. W show that beyond some empirical process conditions the only essential condition for efficiency of an NPMLE of the distribution of X is that the regions associated with incomplete observations on X contain enough complete observations. This is heuristically explained by describing the EM-algorithm. We provide identifiably of the self-consistency equation and efficiency of the NPMLE in order to make this statement rigorous. The usual kind of differentiability conditions in the proof are avoided by using an identity which holds for the NPMLE of linear parameters in convex models. We provide a bivariate censoring application in which the condition and hence the NPMLE fails, but where other estimators, not based on the NPMLE principle, are highly inefficient. It is shown how to slightly reduce the data so that the conditions hold for the reduced data. The conditions are verified for the univariate censoring, double censored, and Ibragimov-Has'minski models.