6 resultados para CT images subject-specific design

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When comparing a new treatment with a control in a randomized clinical study, the treatment effect is generally assessed by evaluating a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. In this paper, we show a systematic, effective way to identify a promising population, for which the new treatment is expected to have a desired benefit, using the data from a current study involving similar comparator treatments. Specifically, with the existing data we first create a parametric scoring system using multiple covariates to estimate subject-specific treatment differences. Using this system, we specify a desired level of treatment difference and create a subgroup of patients, defined as those whose estimated scores exceed this threshold. An empirically calibrated group-specific treatment difference curve across a range of threshold values is constructed. The population of patients with any desired level of treatment benefit can then be identified accordingly. To avoid any ``self-serving'' bias, we utilize a cross-training-evaluation method for implementing the above two-step procedure. Lastly, we show how to select the best scoring system among all competing models. The proposals are illustrated with the data from two clinical trials in treating AIDS and cardiovascular diseases. Note that if we are not interested in designing a new study for comparing similar treatments, the new procedure can also be quite useful for the management of future patients who would receive nontrivial benefits to compensate for the risk or cost of the new treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study panel count data with informative observation times. We assume nonparametric and semiparametric proportional rate models for the underlying recurrent event process, where the form of the baseline rate function is left unspecified and a subject-specific frailty variable inflates or deflates the rate function multiplicatively. The proposed models allow the recurrent event processes and observation times to be correlated through their connections with the unobserved frailty; moreover, the distributions of both the frailty variable and observation times are considered as nuisance parameters. The baseline rate function and the regression parameters are estimated by maximizing a conditional likelihood function of observed event counts and solving estimation equations. Large sample properties of the proposed estimators are studied. Numerical studies demonstrate that the proposed estimation procedures perform well for moderate sample sizes. An application to a bladder tumor study is presented to illustrate the use of the proposed methods.