3 resultados para CHARITABLE ASSOCIATIONS

em Collection Of Biostatistics Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assess the strength of association between aerosol optical depth (AOD) retrievals from the GOES Aerosol/Smoke Product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United States. GASP AOD is retrieved from a geostationary platform and therefore provides dense temporal coverage with half-hourly observations every day, in contrast to once per day snapshots from polar-orbiting satellites. However, GASP AOD is based on a less-sophisticated instrument and retrieval algorithm. We find that correlations between GASP AOD and PM2.5 over time at fixed locations are reasonably high, except in the winter and in the western U.S. Correlations over space at fixed times are lower. Simple averaging over time actually reduces correlations over space dramatically, but statistical calibration allows averaging over time that produces strong correlations. These results and the data density of GASP AOD highlight its potential to help improve exposure estimates for epidemiological analyses. On average 40% of days in a month have a GASP AOD retrieval compared to 14% for MODIS and 4% for MISR. Furthermore, GASP AOD has been retrieved since November 1994, providing the possibility of a long-term record that pre-dates the availability of most PM2.5 monitoring data and other satellite instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granger causality (GC) is a statistical technique used to estimate temporal associations in multivariate time series. Many applications and extensions of GC have been proposed since its formulation by Granger in 1969. Here we control for potentially mediating or confounding associations between time series in the context of event-related electrocorticographic (ECoG) time series. A pruning approach to remove spurious connections and simultaneously reduce the required number of estimations to fit the effective connectivity graph is proposed. Additionally, we consider the potential of adjusted GC applied to independent components as a method to explore temporal relationships between underlying source signals. Both approaches overcome limitations encountered when estimating many parameters in multivariate time-series data, an increasingly common predicament in today's brain mapping studies.