2 resultados para CHARGES
em Collection Of Biostatistics Research Archive
Resumo:
Objective. To examine effects of primary care physicians (PCPs) and patients on the association between charges for primary care and specialty care in a point-of-service (POS) health plan. Data Source. Claims from 1996 for 3,308 adult male POS plan members, each of whom was assigned to one of the 50 family practitioner-PCPs with the largest POS plan member-loads. Study Design. A hierarchical multivariate two-part model was fitted using a Gibbs sampler to estimate PCPs' effects on patients' annual charges for two types of services, primary care and specialty care, the associations among PCPs' effects, and within-patient associations between charges for the two services. Adjusted Clinical Groups (ACGs) were used to adjust for case-mix. Principal Findings. PCPs with higher case-mix adjusted rates of specialist use were less likely to see their patients at least once during the year (estimated correlation: –.40; 95% CI: –.71, –.008) and provided fewer services to patients that they saw (estimated correlation: –.53; 95% CI: –.77, –.21). Ten of 11 PCPs whose case-mix adjusted effects on primary care charges were significantly less than or greater than zero (p < .05) had estimated, case-mix adjusted effects on specialty care charges that were of opposite sign (but not significantly different than zero). After adjustment for ACG and PCP effects, the within-patient, estimated odds ratio for any use of primary care given any use of specialty care was .57 (95% CI: .45, .73). Conclusions. PCPs and patients contributed independently to a trade-off between utilization of primary care and specialty care. The trade-off appeared to partially offset significant differences in the amount of care provided by PCPs. These findings were possible because we employed a hierarchical multivariate model rather than separate univariate models.
Resumo:
With recent advances in mass spectrometry techniques, it is now possible to investigate proteins over a wide range of molecular weights in small biological specimens. This advance has generated data-analytic challenges in proteomics, similar to those created by microarray technologies in genetics, namely, discovery of "signature" protein profiles specific to each pathologic state (e.g., normal vs. cancer) or differential profiles between experimental conditions (e.g., treated by a drug of interest vs. untreated) from high-dimensional data. We propose a data analytic strategy for discovering protein biomarkers based on such high-dimensional mass-spectrometry data. A real biomarker-discovery project on prostate cancer is taken as a concrete example throughout the paper: the project aims to identify proteins in serum that distinguish cancer, benign hyperplasia, and normal states of prostate using the Surface Enhanced Laser Desorption/Ionization (SELDI) technology, a recently developed mass spectrometry technique. Our data analytic strategy takes properties of the SELDI mass-spectrometer into account: the SELDI output of a specimen contains about 48,000 (x, y) points where x is the protein mass divided by the number of charges introduced by ionization and y is the protein intensity of the corresponding mass per charge value, x, in that specimen. Given high coefficients of variation and other characteristics of protein intensity measures (y values), we reduce the measures of protein intensities to a set of binary variables that indicate peaks in the y-axis direction in the nearest neighborhoods of each mass per charge point in the x-axis direction. We then account for a shifting (measurement error) problem of the x-axis in SELDI output. After these pre-analysis processing of data, we combine the binary predictors to generate classification rules for cancer, benign hyperplasia, and normal states of prostate. Our approach is to apply the boosting algorithm to select binary predictors and construct a summary classifier. We empirically evaluate sensitivity and specificity of the resulting summary classifiers with a test dataset that is independent from the training dataset used to construct the summary classifiers. The proposed method performed nearly perfectly in distinguishing cancer and benign hyperplasia from normal. In the classification of cancer vs. benign hyperplasia, however, an appreciable proportion of the benign specimens were classified incorrectly as cancer. We discuss practical issues associated with our proposed approach to the analysis of SELDI output and its application in cancer biomarker discovery.