2 resultados para CANCER OUTCOMES
em Collection Of Biostatistics Research Archive
Resumo:
We consider inference in randomized studies, in which repeatedly measured outcomes may be informatively missing due to drop out. In this setting, it is well known that full data estimands are not identified unless unverified assumptions are imposed. We assume a non-future dependence model for the drop-out mechanism and posit an exponential tilt model that links non-identifiable and identifiable distributions. This model is indexed by non-identified parameters, which are assumed to have an informative prior distribution, elicited from subject-matter experts. Under this model, full data estimands are shown to be expressed as functionals of the distribution of the observed data. To avoid the curse of dimensionality, we model the distribution of the observed data using a Bayesian shrinkage model. In a simulation study, we compare our approach to a fully parametric and a fully saturated model for the distribution of the observed data. Our methodology is motivated and applied to data from the Breast Cancer Prevention Trial.
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.