12 resultados para Biology, Biostatistics|Biology, Genetics|Biology, Bioinformatics
em Collection Of Biostatistics Research Archive
Resumo:
The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. We detail some of the design decisions, software paradigms and operational strategies that have allowed a small number of researchers to provide a wide variety of innovative, extensible, software solutions in a relatively short time. The use of an object oriented programming paradigm, the adoption and development of a software package system, designing by contract, distributed development and collaboration with other projects are elements of this project's success. Individually, each of these concepts are useful and important but when combined they have provided a strong basis for rapid development and deployment of innovative and flexible research software for scientific computation. A primary objective of this initiative is achievement of total remote reproducibility of novel algorithmic research results.
Resumo:
Book review: Primate Craniofacial Function and Biology
Resumo:
Professor Sir David R. Cox (DRC) is widely acknowledged as among the most important scientists of the second half of the twentieth century. He inherited the mantle of statistical science from Pearson and Fisher, advanced their ideas, and translated statistical theory into practice so as to forever change the application of statistics in many fields, but especially biology and medicine. The logistic and proportional hazards models he substantially developed, are arguably among the most influential biostatistical methods in current practice. This paper looks forward over the period from DRC's 80th to 90th birthdays, to speculate about the future of biostatistics, drawing lessons from DRC's contributions along the way. We consider "Cox's model" of biostatistics, an approach to statistical science that: formulates scientific questions or quantities in terms of parameters gamma in probability models f(y; gamma) that represent in a parsimonious fashion, the underlying scientific mechanisms (Cox, 1997); partition the parameters gamma = theta, eta into a subset of interest theta and other "nuisance parameters" eta necessary to complete the probability distribution (Cox and Hinkley, 1974); develops methods of inference about the scientific quantities that depend as little as possible upon the nuisance parameters (Barndorff-Nielsen and Cox, 1989); and thinks critically about the appropriate conditional distribution on which to base infrences. We briefly review exciting biomedical and public health challenges that are capable of driving statistical developments in the next decade. We discuss the statistical models and model-based inferences central to the CM approach, contrasting them with computationally-intensive strategies for prediction and inference advocated by Breiman and others (e.g. Breiman, 2001) and to more traditional design-based methods of inference (Fisher, 1935). We discuss the hierarchical (multi-level) model as an example of the future challanges and opportunities for model-based inference. We then consider the role of conditional inference, a second key element of the CM. Recent examples from genetics are used to illustrate these ideas. Finally, the paper examines causal inference and statistical computing, two other topics we believe will be central to biostatistics research and practice in the coming decade. Throughout the paper, we attempt to indicate how DRC's work and the "Cox Model" have set a standard of excellence to which all can aspire in the future.
Resumo:
While scientific research and the methodologies involved have gone through substantial technological evolution the technology involved in the publication of the results of these endeavors has remained relatively stagnant. Publication is largely done in the same manner today as it was fifty years ago. Many journals have adopted electronic formats, however, their orientation and style is little different from a printed document. The documents tend to be static and take little advantage of computational resources that might be available. Recent work, Gentleman and Temple Lang (2004), suggests a methodology and basic infrastructure that can be used to publish documents in a substantially different way. Their approach is suitable for the publication of papers whose message relies on computation. Stated quite simply, Gentleman and Temple Lang propose a paradigm where documents are mixtures of code and text. Such documents may be self-contained or they may be a component of a compendium which provides the infrastructure needed to provide access to data and supporting software. These documents, or compendiums, can be processed in a number of different ways. One transformation will be to replace the code with its output -- thereby providing the familiar, but limited, static document. In this paper we apply these concepts to a seminal paper in bioinformatics, namely The Molecular Classification of Cancer, Golub et al. (1999). The authors of that paper have generously provided data and other information that have allowed us to largely reproduce their results. Rather than reproduce this paper exactly we demonstrate that such a reproduction is possible and instead concentrate on demonstrating the usefulness of the compendium concept itself.
Resumo:
The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.
Resumo:
The advances in computational biology have made simultaneous monitoring of thousands of features possible. The high throughput technologies not only bring about a much richer information context in which to study various aspects of gene functions but they also present challenge of analyzing data with large number of covariates and few samples. As an integral part of machine learning, classification of samples into two or more categories is almost always of interest to scientists. In this paper, we address the question of classification in this setting by extending partial least squares (PLS), a popular dimension reduction tool in chemometrics, in the context of generalized linear regression based on a previous approach, Iteratively ReWeighted Partial Least Squares, i.e. IRWPLS (Marx, 1996). We compare our results with two-stage PLS (Nguyen and Rocke, 2002A; Nguyen and Rocke, 2002B) and other classifiers. We show that by phrasing the problem in a generalized linear model setting and by applying bias correction to the likelihood to avoid (quasi)separation, we often get lower classification error rates.
Resumo:
A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. We discuss different approaches to this task and illustrate how they can be applied using software from the Bioconductor Project. A central problem is the high dimensionality of gene expression space, which prohibits a comprehensive statistical analysis without focusing on particular aspects of the joint distribution of the genes expression levels. Possible strategies are to do univariate gene-by-gene analysis, and to perform data-driven nonspecific filtering of genes before the actual statistical analysis. However, more focused strategies that make use of biologically relevant knowledge are more likely to increase our understanding of the data.