3 resultados para Binary linear programming (BLP)

em Collection Of Biostatistics Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number (Olshen {\it et~al}, 2004). The algorithm tests for change-points using a maximal $t$-statistic with a permutation reference distribution to obtain the corresponding $p$-value. The number of computations required for the maximal test statistic is $O(N^2),$ where $N$ is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster. algorithm. Results: We present a hybrid approach to obtain the $p$-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analysis of array CGH data from a breast cancer cell line to show the impact of the new approaches on the analysis of real data. Availability: An R (R Development Core Team, 2006) version of the CBS algorithm has been implemented in the ``DNAcopy'' package of the Bioconductor project (Gentleman {\it et~al}, 2004). The proposed hybrid method for the $p$-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a diagnostic test for the mixing distribution in a generalised linear mixed model. The test is based on the difference between the marginal maximum likelihood and conditional maximum likelihood estimates of a subset of the fixed effects in the model. We derive the asymptotic variance of this difference, and propose a test statistic that has a limiting chi-square distribution under the null hypothesis that the mixing distribution is correctly specified. For the important special case of the logistic regression model with random intercepts, we evaluate via simulation the power of the test in finite samples under several alternative distributional forms for the mixing distribution. We illustrate the method by applying it to data from a clinical trial investigating the effects of hormonal contraceptives in women.