3 resultados para Bearing capacity
em Collection Of Biostatistics Research Archive
Resumo:
A comparative study has been made of human and great ape molar tooth enamel. Nanoindentation techniques are used to map profiles of elastic modulus and hardness across sections from the enamel–dentin junction to the outer tooth surface. The measured data profiles overlap between species, suggesting a degree of commonality in material properties. Using established deformation and fracture relations, critical loads to produce function-threatening damage in the enamel of each species are calculated for characteristic tooth sizes and enamel thicknesses. The results suggest that differences in load-bearing capacity of molar teeth in primates are less a function of underlying material properties than of morphology.
Resumo:
An experimental simulation study is made to determine the effects of occlusal wear on the capacity of teeth to resist fracture. Tests are carried out on model dome structures, using glass shells to represent enamel and epoxy filler to represent dentin. The top of the domes are ground and polished to produce flat surfaces of prescribed depths relative to shell thickness. The worn surfaces are then loaded axially with a hard sphere, or a hard or soft flat indenter, to represent extremes of food contacts. The loads required to drive longitudinal cracks around the side walls of the enamel to failure are measured as a function of relative wear depth. It is shown that increased wear can inhibit or enhance load-bearing capacity, depending on the nature of the contact. The results are discussed in the context of biological evolutionary pressures.
Resumo:
The large, bunodont postcanine teeth in living sea otters (Enhydra lutris) have been likened to those of certain fossil hominins, particularly the ’robust’ australopiths (genus Paranthropus). We examine this evolutionary convergence by conducting fracture experiments on extracted molar teeth of sea otters and modern humans (Homo sapiens) to determine how load-bearing capacity relates to tooth morphology and enamel material properties. In situ optical microscopy and x-ray imaging during simulated occlusal loading reveal the nature of the fracture patterns. Explicit fracture relations are used to analyze the data and to extrapolate the results from humans to earlier hominins. It is shown that the molar teeth of sea otters have considerably thinner enamel than those of humans, making sea otter molars more susceptible to certain kinds of fractures. At the same time, the base diameter of sea otter first molars is larger, diminishing the fracture susceptibility in a compensatory manner. We also conduct nanoindentation tests to map out elastic modulus and hardness of sea otter and human molars through a section thickness, and microindentation tests to measure toughness. We find that while sea otter enamel is just as stiff elastically as human enamel, it is a little softer and tougher. The role of these material factors in the capacity of dentition to resist fracture and deformation is considered. From such comparisons, we argue that early hominin species like Paranthropus most likely consumed hard food objects with substantially higher biting forces than those exerted by modern humans.