4 resultados para 750301 The distribution of wealth
em Collection Of Biostatistics Research Archive
Resumo:
The construction of a reliable, practically useful prediction rule for future response is heavily dependent on the "adequacy" of the fitted regression model. In this article, we consider the absolute prediction error, the expected value of the absolute difference between the future and predicted responses, as the model evaluation criterion. This prediction error is easier to interpret than the average squared error and is equivalent to the mis-classification error for the binary outcome. We show that the distributions of the apparent error and its cross-validation counterparts are approximately normal even under a misspecified fitted model. When the prediction rule is "unsmooth", the variance of the above normal distribution can be estimated well via a perturbation-resampling method. We also show how to approximate the distribution of the difference of the estimated prediction errors from two competing models. With two real examples, we demonstrate that the resulting interval estimates for prediction errors provide much more information about model adequacy than the point estimates alone.
Resumo:
The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.
Resumo:
Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.
Resumo:
We are concerned with the estimation of the exterior surface of tube-shaped anatomical structures. This interest is motivated by two distinct scientific goals, one dealing with the distribution of HIV microbicide in the colon and the other with measuring degradation in white-matter tracts in the brain. Our problem is posed as the estimation of the support of a distribution in three dimensions from a sample from that distribution, possibly measured with error. We propose a novel tube-fitting algorithm to construct such estimators. Further, we conduct a simulation study to aid in the choice of a key parameter of the algorithm, and we test our algorithm with validation study tailored to the motivating data sets. Finally, we apply the tube-fitting algorithm to a colon image produced by single photon emission computed tomography (SPECT)and to a white-matter tract image produced using diffusion tensor `imaging (DTI).