1 resultado para 3D Active shape models
em Collection Of Biostatistics Research Archive
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (57)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (14)
- Archive of European Integration (2)
- Aston University Research Archive (16)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (45)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (107)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (60)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (29)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (8)
- DigitalCommons@The Texas Medical Center (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (27)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (4)
- Escola Superior de Educação de Paula Frassinetti (1)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (9)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (7)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (14)
- Nottingham eTheses (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (81)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (14)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo Saúde Pública - SP (9)
- Universidad de Alicante (25)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (58)
- Universidade Complutense de Madrid (3)
- Universidade de Madeira (1)
- Universidade do Minho (7)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (15)
- Université de Lausanne, Switzerland (88)
- Université de Montréal (2)
- Université de Montréal, Canada (22)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (29)
- University of Washington (3)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We propose a novel class of models for functional data exhibiting skewness or other shape characteristics that vary with spatial or temporal location. We use copulas so that the marginal distributions and the dependence structure can be modeled independently. Dependence is modeled with a Gaussian or t-copula, so that there is an underlying latent Gaussian process. We model the marginal distributions using the skew t family. The mean, variance, and shape parameters are modeled nonparametrically as functions of location. A computationally tractable inferential framework for estimating heterogeneous asymmetric or heavy-tailed marginal distributions is introduced. This framework provides a new set of tools for increasingly complex data collected in medical and public health studies. Our methods were motivated by and are illustrated with a state-of-the-art study of neuronal tracts in multiple sclerosis patients and healthy controls. Using the tools we have developed, we were able to find those locations along the tract most affected by the disease. However, our methods are general and highly relevant to many functional data sets. In addition to the application to one-dimensional tract profiles illustrated here, higher-dimensional extensions of the methodology could have direct applications to other biological data including functional and structural MRI.