18 resultados para partition-survival model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that unrecognized heterogeneity among patients, such as is conferred by genetic subtype, can undermine the power of randomized trial, designed under the assumption of homogeneity, to detect a truly beneficial treatment. We consider the conditional power approach to allow for recovery of power under unexplained heterogeneity. While Proschan and Hunsberger (1995) confined the application of conditional power design to normally distributed observations, we consider more general and difficult settings in which the data are in the framework of continuous time and are subject to censoring. In particular, we derive a procedure appropriate for the analysis of the weighted log rank test under the assumption of a proportional hazards frailty model. The proposed method is illustrated through application to a brain tumor trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.