19 resultados para Random effects
Resumo:
This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.
Resumo:
Clustered data analysis is characterized by the need to describe both systematic variation in a mean model and cluster-dependent random variation in an association model. Marginalized multilevel models embrace the robustness and interpretations of a marginal mean model, while retaining the likelihood inference capabilities and flexible dependence structures of a conditional association model. Although there has been increasing recognition of the attractiveness of marginalized multilevel models, there has been a gap in their practical application arising from a lack of readily available estimation procedures. We extend the marginalized multilevel model to allow for nonlinear functions in both the mean and association aspects. We then formulate marginal models through conditional specifications to facilitate estimation with mixed model computational solutions already in place. We illustrate this approach on a cerebrovascular deficiency crossover trial.
Resumo:
The purpose of this study is to develop statistical methodology to facilitate indirect estimation of the concentration of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. The differences in antiretroviral drug concentrations in these organs may lead to suboptimal concentrations in one gland compared to the other. Suboptimal levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland, lead to a source of sexually transmissible virus and increase the chance of selecting for drug resistant virus. This information may be useful selecting antiretroviral drug regimen that will achieve optimal concentrations in most of male genital tract glands. Using fractionally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in each fraction that are uniquely produced by specific male accessory glands. To determine the original glandular concentrations of the surrogate markers, Lundquist solved a simultaneous series of linear equations. This method has several limitations. In particular, it does not yield a unique solution, it does not address measurement error, and it disregards inter-subject variability in the parameters. To cope with these limitations, we developed a mechanistic latent variable model based on the physiology of the male genital tract and surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with regard to the distributional assumptions on the random effects and priors. The model and Bayesian approach is validated on experimental data where the concentration of a drug should be (biologically) differentially distributed between the two glands. In this example, the Bayesian model-based conclusions are found to be robust to model specification and this hierarchical approach leads to more scientifically valid conclusions than the original methodology. In particular, unlike existing methods, the proposed model based approach was not affected by a common form of outliers.
Resumo:
Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.