83 resultados para Johns Hopkins University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical approaches to evaluate higher order SNP-SNP and SNP-environment interactions are critical in genetic association studies, as susceptibility to complex disease is likely to be related to the interaction of multiple SNPs and environmental factors. Logic regression (Kooperberg et al., 2001; Ruczinski et al., 2003) is one such approach, where interactions between SNPs and environmental variables are assessed in a regression framework, and interactions become part of the model search space. In this manuscript we extend the logic regression methodology, originally developed for cohort and case-control studies, for studies of trios with affected probands. Trio logic regression accounts for the linkage disequilibrium (LD) structure in the genotype data, and accommodates missing genotypes via haplotype-based imputation. We also derive an efficient algorithm to simulate case-parent trios where genetic risk is determined via epistatic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many clinical trials to evaluate treatment efficacy, it is believed that there may exist latent treatment effectiveness lag times after which medical procedure or chemical compound would be in full effect. In this article, semiparametric regression models are proposed and studied to estimate the treatment effect accounting for such latent lag times. The new models take advantage of the invariance property of the additive hazards model in marginalizing over random effects, so parameters in the models are easy to be estimated and interpreted, while the flexibility without specifying baseline hazard function is kept. Monte Carlo simulation studies demonstrate the appropriateness of the proposed semiparametric estimation procedure. Data collected in the actual randomized clinical trial, which evaluates the effectiveness of biodegradable carmustine polymers for treatment of recurrent brain tumors, are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a numerically simple routine for locally adaptive smoothing. The locally heterogeneous regression function is modelled as a penalized spline with a smoothly varying smoothing parameter modelled as another penalized spline. This is being formulated as hierarchical mixed model, with spline coe±cients following a normal distribution, which by itself has a smooth structure over the variances. The modelling exercise is in line with Baladandayuthapani, Mallick & Carroll (2005) or Crainiceanu, Ruppert & Carroll (2006). But in contrast to these papers Laplace's method is used for estimation based on the marginal likelihood. This is numerically simple and fast and provides satisfactory results quickly. We also extend the idea to spatial smoothing and smoothing in the presence of non normal response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In environmental epidemiology, exposure X and health outcome Y vary in space and time. We present a method to diagnose the possible influence of unmeasured confounders U on the estimated effect of X on Y and to propose several approaches to robust estimation. The idea is to use space and time as proxy measures for the unmeasured factors U. We start with the time series case where X and Y are continuous variables at equally-spaced times and assume a linear model. We define matching estimator b(u)s that correspond to pairs of observations with specific lag u. Controlling for a smooth function of time, St, using a kernel estimator is roughly equivalent to estimating the association with a linear combination of the b(u)s with weights that involve two components: the assumptions about the smoothness of St and the normalized variogram of the X process. When an unmeasured confounder U exists, but the model otherwise correctly controls for measured confounders, the excess variation in b(u)s is evidence of confounding by U. We use the plot of b(u)s versus lag u, lagged-estimator-plot (LEP), to diagnose the influence of U on the effect of X on Y. We use appropriate linear combination of b(u)s or extrapolate to b(0) to obtain novel estimators that are more robust to the influence of smooth U. The methods are extended to time series log-linear models and to spatial analyses. The LEP plot gives us a direct view of the magnitude of the estimators for each lag u and provides evidence when models did not adequately describe the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-site time series studies of air pollution and mortality and morbidity have figured prominently in the literature as comprehensive approaches for estimating acute effects of air pollution on health. Hierarchical models are generally used to combine site-specific information and estimate pooled air pollution effects taking into account both within-site statistical uncertainty, and across-site heterogeneity. Within a site, characteristics of time series data of air pollution and health (small pollution effects, missing data, highly correlated predictors, non linear confounding etc.) make modelling all sources of uncertainty challenging. One potential consequence is underestimation of the statistical variance of the site-specific effects to be combined. In this paper we investigate the impact of variance underestimation on the pooled relative rate estimate. We focus on two-stage normal-normal hierarchical models and on under- estimation of the statistical variance at the first stage. By mathematical considerations and simulation studies, we found that variance underestimation does not affect the pooled estimate substantially. However, some sensitivity of the pooled estimate to variance underestimation is observed when the number of sites is small and underestimation is severe. These simulation results are applicable to any two-stage normal-normal hierarchical model for combining information of site-specific results, and they can be easily extended to more general hierarchical formulations. We also examined the impact of variance underestimation on the national average relative rate estimate from the National Morbidity Mortality Air Pollution Study and we found that variance underestimation as much as 40% has little effect on the national average.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the simultaneous estimation of a large number of related quantities, multilevel models provide a formal mechanism for efficiently making use of the ensemble of information for deriving individual estimates. In this article we investigate the ability of the likelihood to identify the relationship between signal and noise in multilevel linear mixed models. Specifically, we consider the ability of the likelihood to diagnose conjugacy or independence between the signals and noises. Our work was motivated by the analysis of data from high-throughput experiments in genomics. The proposed model leads to a more flexible family. However, we further demonstrate that adequately capitalizing on the benefits of a well fitting fully-specified likelihood in the terms of gene ranking is difficult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple outcomes data are commonly used to characterize treatment effects in medical research, for instance, multiple symptoms to characterize potential remission of a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is evaluated. Such a treatment effect may over generalize the effect across the outcomes. On the other hand individual treatment effects, varying across all outcomes, are complicated to interpret, and their estimation may lose precision relative to a global summary. An effective compromise to summarize the treatment effect may be through patterns of the treatment effects, i.e. "differentiated effects." In this paper we propose a two-category model to differentiate treatment effects into two groups. A model fitting algorithm and simulation study are presented, and several methods are developed to analyze heterogeneity presenting in the treatment effects. The method is illustrated using an analysis of schizophrenia symptom data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study panel count data with informative observation times. We assume nonparametric and semiparametric proportional rate models for the underlying recurrent event process, where the form of the baseline rate function is left unspecified and a subject-specific frailty variable inflates or deflates the rate function multiplicatively. The proposed models allow the recurrent event processes and observation times to be correlated through their connections with the unobserved frailty; moreover, the distributions of both the frailty variable and observation times are considered as nuisance parameters. The baseline rate function and the regression parameters are estimated by maximizing a conditional likelihood function of observed event counts and solving estimation equations. Large sample properties of the proposed estimators are studied. Numerical studies demonstrate that the proposed estimation procedures perform well for moderate sample sizes. An application to a bladder tumor study is presented to illustrate the use of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent article in this journal (Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2: e124) argued that more than half of published research findings in the medical literature are false. In this commentary, we examine the structure of that argument, and show that it has three basic components: 1)An assumption that the prior probability of most hypotheses explored in medical research is below 50%. 2)Dichotomization of P-values at the 0.05 level and introduction of a “bias” factor (produced by significance-seeking), the combination of which severely weakens the evidence provided by every design. 3)Use of Bayes theorem to show that, in the face of weak evidence, hypotheses with low prior probabilities cannot have posterior probabilities over 50%. Thus, the claim is based on a priori assumptions that most tested hypotheses are likely to be false, and then the inferential model used makes it impossible for evidence from any study to overcome this handicap. We focus largely on step (2), explaining how the combination of dichotomization and “bias” dilutes experimental evidence, and showing how this dilution leads inevitably to the stated conclusion. We also demonstrate a fallacy in another important component of the argument –that papers in “hot” fields are more likely to produce false findings. We agree with the paper’s conclusions and recommendations that many medical research findings are less definitive than readers suspect, that P-values are widely misinterpreted, that bias of various forms is widespread, that multiple approaches are needed to prevent the literature from being systematically biased and the need for more data on the prevalence of false claims. But calculating the unreliability of the medical research literature, in whole or in part, requires more empirical evidence and different inferential models than were used. The claim that “most research findings are false for most research designs and for most fields” must be considered as yet unproven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to make scientific findings reproducible is increasingly important in areas where substantive results are the product of complex statistical computations. Reproducibility can allow others to verify the published findings and conduct alternate analyses of the same data. A question that arises naturally is how can one conduct and distribute reproducible research? This question is relevant from the point of view of both the authors who want to make their research reproducible and readers who want to reproduce relevant findings reported in the scientific literature. We present a framework in which reproducible research can be conducted and distributed via cached computations and describe specific tools for both authors and readers. As a prototype implementation we introduce three software packages written in the R language. The cacheSweave and stashR packages together provide tools for caching computational results in a key-value style database which can be published to a public repository for readers to download. The SRPM package provides tools for generating and interacting with "shared reproducibility packages" (SRPs) which can facilitate the distribution of the data and code. As a case study we demonstrate the use of the toolkit on a national study of air pollution exposure and mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to seriously misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the inferences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization and exploratory analysis is an important part of any data analysis and is made more challenging when the data are voluminous and high-dimensional. One such example is environmental monitoring data, which are often collected over time and at multiple locations, resulting in a geographically indexed multivariate time series. Financial data, although not necessarily containing a geographic component, present another source of high-volume multivariate time series data. We present the mvtsplot function which provides a method for visualizing multivariate time series data. We outline the basic design concepts and provide some examples of its usage by applying it to a database of ambient air pollution measurements in the United States and to a hypothetical portfolio of stocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical errors originating in health care facilities are a significant source of preventable morbidity, mortality, and healthcare costs. Voluntary error report systems that collect information on the causes and contributing factors of medi- cal errors regardless of the resulting harm may be useful for developing effective harm prevention strategies. Some patient safety experts question the utility of data from errors that did not lead to harm to the patient, also called near misses. A near miss (a.k.a. close call) is an unplanned event that did not result in injury to the patient. Only a fortunate break in the chain of events prevented injury. We use data from a large voluntary reporting system of 836,174 medication errors from 1999 to 2005 to provide evidence that the causes and contributing factors of errors that result in harm are similar to the causes and contributing factors of near misses. We develop Bayesian hierarchical models for estimating the log odds of selecting a given cause (or contributing factor) of error given harm has occurred and the log odds of selecting the same cause given that harm did not occur. The posterior distribution of the correlation between these two vectors of log-odds is used as a measure of the evidence supporting the use of data from near misses and their causes and contributing factors to prevent medical errors. In addition, we identify the causes and contributing factors that have the highest or lowest log-odds ratio of harm versus no harm. These causes and contributing factors should also be a focus in the design of prevention strategies. This paper provides important evidence on the utility of data from near misses, which constitute the vast majority of errors in our data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) are used to discover genes underlying complex, heritable disorders for which less powerful study designs have failed in the past. The number of GWAS has skyrocketed recently with findings reported in top journals and the mainstream media. Mircorarrays are the genotype calling technology of choice in GWAS as they permit exploration of more than a million single nucleotide polymorphisms (SNPs)simultaneously. The starting point for the statistical analyses used by GWAS, to determine association between loci and disease, are genotype calls (AA, AB, or BB). However, the raw data, microarray probe intensities, are heavily processed before arriving at these calls. Various sophisticated statistical procedures have been proposed for transforming raw data into genotype calls. We find that variability in microarray output quality across different SNPs, different arrays, and different sample batches has substantial inuence on the accuracy of genotype calls made by existing algorithms. Failure to account for these sources of variability, GWAS run the risk of adversely affecting the quality of reported findings. In this paper we present solutions based on a multi-level mixed model. Software implementation of the method described in this paper is available as free and open source code in the crlmm R/BioConductor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider inference in randomized studies, in which repeatedly measured outcomes may be informatively missing due to drop out. In this setting, it is well known that full data estimands are not identified unless unverified assumptions are imposed. We assume a non-future dependence model for the drop-out mechanism and posit an exponential tilt model that links non-identifiable and identifiable distributions. This model is indexed by non-identified parameters, which are assumed to have an informative prior distribution, elicited from subject-matter experts. Under this model, full data estimands are shown to be expressed as functionals of the distribution of the observed data. To avoid the curse of dimensionality, we model the distribution of the observed data using a Bayesian shrinkage model. In a simulation study, we compare our approach to a fully parametric and a fully saturated model for the distribution of the observed data. Our methodology is motivated and applied to data from the Breast Cancer Prevention Trial.