274 resultados para Bepress
Resumo:
In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.
Resumo:
Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.
Resumo:
We are concerned with the estimation of the exterior surface of tube-shaped anatomical structures. This interest is motivated by two distinct scientific goals, one dealing with the distribution of HIV microbicide in the colon and the other with measuring degradation in white-matter tracts in the brain. Our problem is posed as the estimation of the support of a distribution in three dimensions from a sample from that distribution, possibly measured with error. We propose a novel tube-fitting algorithm to construct such estimators. Further, we conduct a simulation study to aid in the choice of a key parameter of the algorithm, and we test our algorithm with validation study tailored to the motivating data sets. Finally, we apply the tube-fitting algorithm to a colon image produced by single photon emission computed tomography (SPECT)and to a white-matter tract image produced using diffusion tensor `imaging (DTI).
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.