17 resultados para Smoothing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smoothing splines are a popular approach for non-parametric regression problems. We use periodic smoothing splines to fit a periodic signal plus noise model to data for which we assume there are underlying circadian patterns. In the smoothing spline methodology, choosing an appropriate smoothness parameter is an important step in practice. In this paper, we draw a connection between smoothing splines and REACT estimators that provides motivation for the creation of criteria for choosing the smoothness parameter. The new criteria are compared to three existing methods, namely cross-validation, generalized cross-validation, and generalization of maximum likelihood criteria, by a Monte Carlo simulation and by an application to the study of circadian patterns. For most of the situations presented in the simulations, including the practical example, the new criteria out-perform the three existing criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When different markers are responsive to different aspects of a disease, combination of multiple markers could provide a better screening test for early detection. It is also resonable to assume that the risk of disease changes smoothly as the biomarker values change and the change in risk is monotone with respect to each biomarker. In this paper, we propose a boundary constrained tensor-product B-spline method to estimate the risk of disease by maximizing a penalized likelihood. To choose the optimal amount of smoothing, two scores are proposed which are extensions of the GCV score (O'Sullivan et al. (1986)) and the GACV score (Ziang and Wahba (1996)) to incorporate linear constraints. Simulation studies are carried out to investigate the performance of the proposed estimator and the selection scores. In addidtion, sensitivities and specificities based ona pproximate leave-one-out estimates are proposed to generate more realisitc ROC curves. Data from a pancreatic cancer study is used for illustration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence at a fixed point if the density has a negative derivative. The same rate is obtained by a kernel estimator, but the limit distributions are different. If the density is both differentiable and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence and compare the limit distributors of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behavior of a kernel estimator with a larger bandwidth, in the case that the density is known to have more than one derivative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose methods for smooth hazard estimation of a time variable where that variable is interval censored. These methods allow one to model the transformed hazard in terms of either smooth (smoothing splines) or linear functions of time and other relevant time varying predictor variables. We illustrate the use of this method on a dataset of hemophiliacs where the outcome, time to seroconversion for HIV, is interval censored and left-truncated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a numerically simple routine for locally adaptive smoothing. The locally heterogeneous regression function is modelled as a penalized spline with a smoothly varying smoothing parameter modelled as another penalized spline. This is being formulated as hierarchical mixed model, with spline coe±cients following a normal distribution, which by itself has a smooth structure over the variances. The modelling exercise is in line with Baladandayuthapani, Mallick & Carroll (2005) or Crainiceanu, Ruppert & Carroll (2006). But in contrast to these papers Laplace's method is used for estimation based on the marginal likelihood. This is numerically simple and fast and provides satisfactory results quickly. We also extend the idea to spatial smoothing and smoothing in the presence of non normal response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submicroscopic changes in chromosomal DNA copy number dosage are common and have been implicated in many heritable diseases and cancers. Recent high-throughput technologies have a resolution that permits the detection of segmental changes in DNA copy number that span thousands of basepairs across the genome. Genome-wide association studies (GWAS) may simultaneously screen for copy number-phenotype and SNP-phenotype associations as part of the analytic strategy. However, genome-wide array analyses are particularly susceptible to batch effects as the logistics of preparing DNA and processing thousands of arrays often involves multiple laboratories and technicians, or changes over calendar time to the reagents and laboratory equipment. Failure to adjust for batch effects can lead to incorrect inference and requires inefficient post-hoc quality control procedures that exclude regions that are associated with batch. Our work extends previous model-based approaches for copy number estimation by explicitly modeling batch effects and using shrinkage to improve locus-specific estimates of copy number uncertainty. Key features of this approach include the use of diallelic genotype calls from experimental data to estimate batch- and locus-specific parameters of background and signal without the requirement of training data. We illustrate these ideas using a study of bipolar disease and a study of chromosome 21 trisomy. The former has batch effects that dominate much of the observed variation in quantile-normalized intensities, while the latter illustrates the robustness of our approach to datasets where as many as 25% of the samples have altered copy number. Locus-specific estimates of copy number can be plotted on the copy-number scale to investigate mosaicism and guide the choice of appropriate downstream approaches for smoothing the copy number as a function of physical position. The software is open source and implemented in the R package CRLMM available at Bioconductor (http:www.bioconductor.org).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.