64 resultados para Harvard University--Admission


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Since mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left truncated and right censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. Firstly, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.