3 resultados para worker members
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Rock-pocket and honeycomb defects impair overall stiffness, accelerate aging, reduce service life, and cause structural problems in hardened concrete members. Traditional methods for detecting such deficient volumes involve visual observations or localized nondestructive methods, which are labor-intensive, time-consuming, highly sensitive to test conditions, and require knowledge of and accessibility to defect locations. The authors propose a vibration response-based nondestructive technique that combines experimental and numerical methodologies for use in identifying the location and severity of internal defects of concrete members. The experimental component entails collecting mode shape curvatures from laboratory beam specimens with size-controlled rock pocket and honeycomb defects, and the numerical component entails simulating beam vibration response through a finite element (FE) model parameterized with three defect-identifying variables indicating location (x, coordinate along the beam length) and severity of damage (alpha, stiffness reduction and beta, mass reduction). Defects are detected by comparing the FE model predictions to experimental measurements and inferring the low number of defect-identifying variables. This method is particularly well-suited for rapid and cost-effective quality assurance for precast concrete members and for inspecting concrete members with simple geometric forms.
Resumo:
The response of some Argentine workers to the 2001 crisis of neoliberalism gave rise to a movement of worker-recovered enterprises (empresas recuperadas por sus trabajadores or ERTs). The ERTs have emerged as former employees took over the control of generally fraudulently bankrupt factories and enterprises. The analysis of the ERT movement within the neoliberal global capitalist order will draw from William Robinson’s (2004) neo-Gramscian concept of hegemony. The theoretical framework of neo-Gramscian hegemony will be used in exposing the contradictions of capitalism on the global, national, organizational and individual scales and the effects they have on the ERT movement. The ERT movement has demonstrated strong level of resilience, despite the numerous economic, social, political and cultural challenges and limitations it faces as a consequence of the implementation of neoliberalism globally. ERTs have shown that through non-violent protests, democratic principles of management and social inclusion, it is possible to start constructing an alternative social order that is based on the cooperative principles of “honesty, openness, social responsibility and caring for others” (ICA 2007) as opposed to secrecy, exclusiveness, individualism and self-interestedness. In order to meet this “utopian” vision, it is essential to push the limits of the possible within the current social order and broaden the alliance to include the organized members of the working class, such as the members of trade unions, and the unorganized, such as the unemployed and underemployed. Though marginal in number and size, the members of ERTs have given rise to a model that is worth exploring in other countries and regions burdened by the contradictory workings of capitalism. Today, ERTs serve as living proofs that workers too are capable of successfully running businesses, not capitalists alone.
Resumo:
Open web steel joists are designed in the United States following the governing specification published by the Steel Joist Institute. For compression members in joists, this specification employs an effective length factor, or K-factor, in confirming their adequacy. In most cases, these K-factors have been conservatively assumed equal to 1.0 for compression web members, regardless of the fact that intuition and limited experimental work indicate that smaller values could be justified. Given that smaller K-factors could result in more economical designs without a loss in safety, the research presented in this thesis aims to suggest procedures for obtaining more rational values. Three different methods for computing in-plane and out-of-plane K-factors are investigated, including (1) a hand calculation method based on the use of alignment charts, (2) computational critical load (eigenvalue) analyses using uniformly distributed loads, and (3) computational analyses using a compressive strain approach. The latter method is novel and allows for computing the individual buckling load of a specific member within a system, such as a joist. Four different joist configurations are investigated, including an 18K3, 28K10, and two variations of a 32LH06. Based on these methods and the very limited number of joists studied, it appears promising that in-plane and out-of-plane K-factors of 0.75 and 0.85, respectively, could be used in computing the flexural buckling strength of web members in routine steel joist design. Recommendations for future work, which include systematically investigating a wider range of joist configurations and connection restraint, are provided.