3 resultados para visualize

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Load flow visualization, which is an important step in structural and machine assembly design may aid in the analysis and eventual synthesis of compliant mechanisms. In this paper, we present a kineto-static formulation to visualize load flow in compliant mechanisms. This formulation uses the concept of transferred forces to quantify load flow from input to the output of a compliant mechanism. The magnitude and direction of load flow in the constituent members enables functional decomposition of the compliant mechanism into (i) Constraints (C): members that are constrained to deform in a particular direction and (ii) Transmitters (T): members that transmit load to the output. Furthermore, it is shown that a constraint member and an adjacent transmitter member can be grouped together to constitute a fundamental building block known as an CT set whose load flow behavior is maximally decoupled from the rest of the mechanism. We can thereby explain the deformation behavior of a number of compliant mechanisms from literature by visualizing load flow, and identifying building blocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers with mid-chain alkoxyamine functionality were synthesized by activating monohalogenated polymers in the presence of nitroso or nitrone radical traps. The resulting polymers were either polystyrene (PSt) homopolymers with a mid-chain alkoxyamine or PSt-poly(methyl acrylate) (PMA) diblock copolymers with an alkoxyamine unit at the junction between the segments. Monohalogenated polymers where synthesized by atom transfer radical polymerization (ATRP) and were then reacted to form polymer radicals in the presence of a radical trap, nitrone or nitroso. When only polystyrene radicals were reacted with the radical trap a dimer was formed with an alkoxyamine functionality in the center of the polymer chain. This functionality allowed the polymer chain to be cleaved in order to visualize the extent of the alkoxyamine functionality incorporation into the polymer chains. It was found that near quantitative alkoxyamine mid-chain functionality could be achieved by activating the PStBr in the presence of 10 equivalents of nitrone, 5 equivalents of copper bromide, and 2 equivalents of copper metal. Further reducing the amount of copper metal led to incomplete coupling, while increasing the equivalents beyond 2 generated polymer dimers with less than quantitative mid-chain functionality. Monochlorinated polystyrene (PStCl) precursors gave much poorer coupling results compared to reactions with PStBr, which is consistent with the stronger C-Cl bond resisting activation and the formation of the polystyryl radicals. When poly (methyl acrylate) (PMABr) is reacted with PStBr in the presence of a nitroso group at reduced temperatures (30 oC) block copolymers were selectively formed with an alkoxyamine functionality in the center. This was done by first activating the PSt-Br to form a polymer radical that would react with the radical trap to form a persistent radical on the oxygen. The PMA-Br, once activated, reacted with the radical on the oxygen to form the block copolymer. To test the amount of functionality incorporated, a coupling reaction was performed with no nitroso present, and found that no reaction occurred. This showed that the radical trap is essential for the coupling to occur, and cleavage of the diblock indicated that the alkoxyamine functionality was indeed incorporated into the diblock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogels are composed of cross-linked networks of hydrophilic polymers that are biocompatible due to their high water content. Mass transfer through hydrogels has been suggested as an effective method of drug delivery, specifically in degradable polymers to minimize lasting effects within the body. Diffusion of small molecules in poly (ethylene glycol) diacrylate (PEG-DA) and dextran methacrylate (dex-MA) hydrogels was characterized in a microfluidic device and by complementary techniques. Microfluidic devices were prepared by crosslinking a formulation of hydrogel and photo-initiator, with and without visible dye, using photolithography to define a central microchannel. Channel sizes within the devices were approximately 600 ¿m to simulate vessels within the body. The microfluidic technique allows for both image and effluent analyses. To visualize the diffusive behavior within the dextran hydrogel, methylene blue and sulforhodamine 101 dyes were used in both elution and uptake experiments. Three analysis techniques for measuring diffusion coefficients were used to quantify the diffusion of solute in the hydrogel, including optical microscopy, characterization of device effluent, and NMR analyses. The optical microscopy technique analyzes images of the dye diffusion captured by a stereomicroscope to generate dye concentration v. position profiles. The data was fit to a diffusion model to determine diffusion coefficients and the dye release profile. In a typical elution experiment, aqueous solution is pumped through the microchannel and dye diffuses out of the hydrogel and into the aqueous phase. During elution, images are taken at regular time intervals and the effluent was collected. Analysis of the device effluent was performed using ultraviolet-visible (UV/Vis) spectroscopy to determine the effluent dye concentration and thus a short-time diffusion coefficient. Nuclear magnetic resonance (NMR) was used to determine a free diffusion coefficient of molecules in hydrogel without the effect of a concentration gradient. Diffusion coefficients for methylene blue and sulforhodamine 101 dyes in dex-MA hydrogel calculated using the three analysis methods all agree well. It was determined that utilizing a combination of the three techniques offers greater insight into molecular diffusion in hydrogels than employing each technique individually. The use of the same microfluidic devices used to measure diffusion is explored in the use of studying the degradation of dex-MA hydrogels. By combining what is known about the degradation rate in regards to the effect of pH and crosslinking and the ability to use a dye solution in contrast to establish the hydrogel boundaries could be a novel approach to studying hydrogel degradation.