2 resultados para visual object detection
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Rock-pocket and honeycomb defects impair overall stiffness, accelerate aging, reduce service life, and cause structural problems in hardened concrete members. Traditional methods for detecting such deficient volumes involve visual observations or localized nondestructive methods, which are labor-intensive, time-consuming, highly sensitive to test conditions, and require knowledge of and accessibility to defect locations. The authors propose a vibration response-based nondestructive technique that combines experimental and numerical methodologies for use in identifying the location and severity of internal defects of concrete members. The experimental component entails collecting mode shape curvatures from laboratory beam specimens with size-controlled rock pocket and honeycomb defects, and the numerical component entails simulating beam vibration response through a finite element (FE) model parameterized with three defect-identifying variables indicating location (x, coordinate along the beam length) and severity of damage (alpha, stiffness reduction and beta, mass reduction). Defects are detected by comparing the FE model predictions to experimental measurements and inferring the low number of defect-identifying variables. This method is particularly well-suited for rapid and cost-effective quality assurance for precast concrete members and for inspecting concrete members with simple geometric forms.
Resumo:
Most primates live in highly complex social systems, and therefore have evolved similarly complex methods of communicating with each other. One type of communication is the use of manual gestures, which are only found in primates. No substantial evidence exists indicating that monkeys use communicative gestures in the wild. However, monkeys may demonstrate the ability to learn and/or use gestures in certain experimental paradigms since they¿ve been shown to use other visual cues such as gaze. The purpose of this study was to investigate if ten brown capuchin monkeys (Cebus apella) were able to use gestural cues from monkeys and a pointing cue from a human to obtain a hidden reward. They were then tested to determine if they could transfer this skill from monkeys to humans and from humans to monkeys. One group of monkeys was trained and tested using a conspecific as the cue giver, and was then tested with a human cue-giver. The second group of monkeys began training and testing with a human cue giver, and was then tested with a monkey cue giver. I found that two monkeys were able to use gestural cues from conspecifics (e.g., reaching) to obtain a hidden reward and then transfer this ability to a pointing cue from a human. Four monkeys learned to use the human pointing cue first, and then transferred this ability to use the gestural cues from conspecifics to obtain a hidden reward. However, the number of trials it took for each monkey to transfer the ability varied considerably. Some subjects spontaneously transferred in the minimum number of trials needed to reach my criteria for successfully obtaining hidden rewards (N = 40 trials), while others needed a large number of trials to do so (e.g. N = 190 trials). Two subjects did not perform successfully in any of the conditions in which they were tested. One subject successfully used the human pointing cue and a human pointing plus vocalization cue, but did not learn the conspecific cue. One subject learned to use the conspecific cue but not the human pointing cue. This was the first study to test if brown capuchin monkeys could use gestural cues from conspecifics to solve an object choice task. The study was also the first to test if capuchins could transfer this skill from monkeys to humans and from humans to monkeys. Results showed that capuchin monkeys were able to flexibly use communicative gestures when they were both unintentionally given by a conspecific and intentionally given by a human to indicate a source of food.