4 resultados para urban interaction design

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the third paper Kresl and Singh have published on this subject. The first was for an OECD conference that was published in 1995. The second was published in Urban Studies in 1999. Hence in this most recent study they can examine urban competitiveness in the US over a period of three decades. Their methodology is distinctive in that it is statistical rather than subjective, as is the case with studies that use a benchmarking or a structural methodology. Their results can be used by city planners in design of a strategic-economic plan. They also capture the major changes in broad regional competitiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bucknell Humanoid Robot Arm project was developed in order toprovide a lightweight robotic arm for the IHMC / Bucknell University bipedal robot that will provide a means of manipulation and facilitate operations in urban environments. The resulting fabricated arm described in this thesis weighs only 13 pounds, and is capable of holding 11 pounds fully outstretched, lifting objects such as tools, and it can open doors. It is also capable of being easily integrated with the IHMC / Bucknell University biped. This thesis provides an introduction to robots themselves, discusses the goals of the Bucknell Humanoid Robot Arm project, provides a background on some of the existing robots, and shows how the Bucknell Humanoid Robot Arm fits in with the studies that have been completed. After reading these studies, important items such as design trees and operational scenarios were completed. The completion of these items led to measurable specifications and later the design requirements and specifications. A significant contribution of this thesis to the robotics discipline involves the design of the actuator itself. The arm uses of individual, lightweight, compactly designed actuators to achieve desired capabilities and performance requirements. Many iterations were completed to get to the final design of each actuator. After completing the actuators, the design of the intermediate links and brackets was finalized. Completion of the design led to the development of a complex controls system which used a combination of Clanguage and Java.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.