4 resultados para universal crossed molecular beam machine

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS2(H2O)n, where n = 1–4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS2(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS2(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)/6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS2 in the atmosphere, the concentrations of these clusters are predicted to be on the order of 105CS2(H2O) clusters∙cm−3 and 102 CS2(H2O)2 clusters∙cm−3 at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS2(H2O)n structures predicted to be present in a low-temperature molecular beam experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonyl sulfide is the most abundant sulfur gas in the atmosphere. We have used MP2 and CCSD(T) theory to study the structures and thermochemistries of carbonyl sulfide interacting with one to four water molecules. We have completed an extensive search for clusters of OCS(H2O)n, where n = 1−4. We located three dimers, two trimers, five tetramers, and four pentamers with the MP2/aug-cc-pVDZ method. In each of the complexes with two or more waters, OCS preferentially interacts with low-energy water clusters. Our results match current theoretical and experimental literature, showing correlation with available geometries and frequencies for the OCS(H2O) species. The CCSD(T)/aug-cc-pVTZ thermochemical values combined with the average amount of OCS and the saturated concentration of H2O in the troposphere, lead to the prediction of 106 OCS(H2O) clusters·cm−3 and 102 OCS(H2O)2 clusters·cm−3 at 298 K. We predict the structures of OCS(H2O)n, n = 1−4 that should predominate in a low-temperature molecular beam and identify specific infrared vibrations that can be used to identify these different clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.