3 resultados para universal coding
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
A new idea for waveform coding using vector quantisation (VQ) is introduced. This idea makes it possible to deal with codevectors much larger than before for a fixed bit per sample rate. Also a solution to the matching problem (inherent in the present context) in the &-norm describing a measure of neamess is presented. The overall computational complexity of this solution is O(n3 log, n). Sample results are presented to demonstrate the advantage of using this technique in the context of coding of speech waveforms.
Resumo:
Abstract- In this correspondence, a simple one-dimensional (1-D) differencing operation is applied to bilevel images prior to block coding to produce a sparse binary image that can be encoded efficiently using any of a number of well-known techniques. The difference image can be encoded more efficiently than the original bilevel image whenever the average run length of black pixels in the original image is greater than two. Compression is achieved because the correlation between adjacent pixels is reduced compared with the original image. The encoding/decoding operations are described and compression performance is presented for a set of standard bilevel images.
Resumo:
Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S-4 (q, t). Both cases, elastic (epsilon = 1) and inelastic (epsilon < 1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6 <= phi <= 0.805, scaling is shown to hold: S-4 (q, t)/chi(4)(t) = s(q xi(t)). Both the dynamic susceptibility chi(4)(tau(alpha)) and the dynamic correlation length xi(tau(alpha)) evaluated at the alpha relaxation time tau(alpha) can be fitted to a power law divergence at a critical packing fraction. The measured xi(tau(alpha)) widely exceeds the largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a slow cluster and the correlation length are related by a robust power law, chi(4)(tau(alpha)) approximate to xi(d-p) (tau(alpha)), with an exponent d - p approximate to 1.6. This scaling is remarkably independent of epsilon, even though the strength of the dynamical heterogeneity at constant volume fraction depends strongly on epsilon.