3 resultados para theoretical Chemistry

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we present the gas-phase vibrational spectrum of vinylacetic acid with a focus on the ν = 1−5 vibrational states of the OH stretching transitions. Cross sections for ν = 1, 2, 4 and 5 of the OH stretching vibrational transitions are derived on the basis of the vapor pressure data obtained for vinylacetic acid. Ab initio calculations are used to assist in the band assignments of the experimental spectra, and to determine the threshold for the decarboxylation of vinylacetic acid. When compared to the theoretical energy barrier to decarboxylation, it is found that the νOH = 4 transition with thermal excitation of low frequency modes or rotational motion and νOH = 5 transitions have sufficient energy for the reaction to proceed following overtone excitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid dissociation constants, or pKa values, are essential for understanding many fundamental reactions in chemistry. These values reveal the deprotonation state of a molecule in a particular solvent. There is great interest in using theoretical methods to calculate the pKa values for many different types of molecules. These include molecules that have not been synthesized, those for which experimental pKa determinations are difficult, and for larger molecules where the local environment changes the usual pKa values, such as for certain amino acids that are part of a larger polypeptide chain. Chemical accuracy in pKa calculations is difficult to achieve, because an error of 1.36 kcal/mol in the change of free energy for deprotonation in solvent results in an error of 1 pKa unit. In this review the most valuable methods for determining accurate pKa values in aqueous solution are presented for educators interested in explaining or using these methods for their students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparison of the crystal structure of a transition state analogue that was used to raise catalytic antibodies for the benzoyl ester hydrolysis of cocaine with structures calculated by ab initio, semiempirical, and solvation semiempirical methods reveals that modeling of solvation is crucial for replicating the crystal structure geometry. Both SM3 and SM2 calculations, starting from the crystal structure TSA I, converged on structures similar to the crystal structure. The 3-21G(*)/HF, 6-31G*/HF, PM3, and AM1 calculations converged on structures similar to each other, but these gas-phase structures were significantly extended relative to the condensed phase structures. Two transition states for the hydrolysis of the benzoyl ester of cocaine were located with the SM3 method. The gas phase calculations failed to locate reasonable transition state structures for this reaction. These results imply that accurate modeling of the potential energy surfaces for the hydrolysis of cocaine requires solvation methods.