3 resultados para strain energy
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The PM3 quantum-mechanical method has been used to study large water clusters ranging from 8 to 42 water molecules. These large clusters are built from smaller building blocks. The building blocks include cyclic tetramers, pentamers, octamers, and a pentagonal dodecahedron cage. The correlations between the strain energy resulting from bending of the hydrogen bonds formed by different cluster motifs and the number of waters involved in the cluster are discussed. The PM3 results are compared with TIP4P potential and ab initio results. The number of net hydrogen bonds per water increases with the cluster size. This places a limit on the size of clusters that would fit the Benson model of liquid water. Many of the 20-mer clusters fit the Benson model well. Calculations of the ion cluster (H20)4o(H30+)2 reveal that the m/e ratio obtainable by mass spectrometry experiments can uniquely indicate the conformation of the 20 water pentagonal dodecahedron cage present in the larger clusters.
Resumo:
Incorporation of enediynes into anticancer drugs remains an intriguing yet elusive strategy for the design of therapeutically active agents. Density functional theory was used to locate reactants, products, and transition states along the Bergman cyclization pathways connecting enediynes to reactive para-biradicals. Sum method correction to low-level calculations confirmed B3LYP/6-31G(d,p) as the method of choice in investigating enediynes. Herein described as MI:Sum, calculated reaction enthalpies differed from experiment by an average of 2.1 kcal·mol−1 (mean unsigned error). A combination of strain energy released across the reaction coordinate and the critical intramolecular distance between reacting diynes explains reactivity differences. Where experimental and calculated barrier heights are in disagreement, higher level multireference treatment of the enediynes confirms lower level estimates. Previous work concerning the chemically reactive fragment of esperamcin, MTC, is expanded to our model system MTC2.
Resumo:
Compliant mechanisms with evenly distributed stresses have better load-bearing ability and larger range of motion than mechanisms with compliance and stresses lumped at flexural hinges. In this paper, we present a metric to quantify how uniformly the strain energy of deformation and thus the stresses are distributed throughout the mechanism topology. The resulting metric is used to optimize cross-sections of conceptual compliant topologies leading to designs with maximal stress distribution. This optimization framework is demonstrated for both single-port mechanisms and single-input single-output mechanisms. It is observed that the optimized designs have lower stresses than their nonoptimized counterparts, which implies an ability for single-port mechanisms to store larger strain energy, and single-input single-output mechanisms to perform larger output work before failure.