2 resultados para state-controlled contexts

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article examines religious practices in the United States, which govern modesty and other dress norms for men. I focus both on the spaces within which they most collide with regulatory regimes of the state and the legal implications of these norms, particularly for observant Muslim men. Undergirding the research are those ‘‘gender equality’’ claims made by many religious adherents, that men are required to maintain proper modesty norms just as are women. Also undergirding the research is the extensive anti-Islam bias in American culture today. The spaces within which men’s religiously proscribed dress and grooming norms are most at issue—indicated by First Amendment legal challenges to rights of religious practice—are primarily those state-controlled, total institutions Goffman describes, such as in the military and prisons. The implications of gendered modesty norms are important, as state control over religious expression in prisons, for example, is much more difficult to contest than in other spaces, although this depends entirely on who is doing the contesting and within which religious context. In American society today—and particularly within the context of growing Islamaphobia following the 9/11 attacks—the implications are greatest for those men practicing ‘‘prison Islam.’’

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron transfer cross sections have been measured for reactions of Ar2+ ions with Ar, N2, O2, CO2, CH4 and C2H6. Time-of-flight techniques have been used to measure both fast neutral Ar0 and fast Ar+ products from single- and double-electron transfer processes involving Ar2+ ions with 4.0 to 7.0 keV impact energies. Incident Ar2+ ions have produced by controlled electron impact ionisation of argon atoms. Reactions have been examined as a function of ionising electron energy and cross sections determined for ground state Ar2+(3P) ions. Charge transfer cross sections have been determined to be in the range of 3*10-16 cm2 for the systems examined. Double-electron transfer cross sections are the same order of magnitude as those measured for the corresponding single-electron transfer reactions. The state distribution of the reactant ion beam has been estimated and electron transfer cross sections obtained for single- and double-electron transfer reactions of metastable Ar2+ions. The magnitudes of electron transfer cross sections in individual systems are similar for both ground and metastable state Ar2+ reactions.