1 resultado para shapes
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Adam Mickiewicz University Repository (3)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (4)
- B-Digital - Universidade Fernando Pessoa - Portugal (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de la Universidad Católica Argentina (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Boston University Digital Common (19)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (23)
- Cambridge University Engineering Department Publications Database (63)
- CentAUR: Central Archive University of Reading - UK (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (135)
- Cochin University of Science & Technology (CUSAT), India (14)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons at Florida International University (2)
- DigitalCommons - The University of Maine Research (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- Greenwich Academic Literature Archive - UK (13)
- Helda - Digital Repository of University of Helsinki (26)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (153)
- Infoteca EMBRAPA (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (25)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (83)
- Queensland University of Technology - ePrints Archive (187)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Royal College of Art Research Repository - Uninet Kingdom (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade dos Açores - Portugal (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (10)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (42)
- University of Michigan (3)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (5)
Resumo:
This study investigates the possibility of custom fitting a widely accepted approximate yield surface equation (Ziemian, 2000) to the theoretical yield surfaces of five different structural shapes, which include wide-flange, solid and hollow rectangular, and solid and hollow circular shapes. To achieve this goal, a theoretically “exact” but overly complex representation of the cross section’s yield surface was initially obtained by using fundamental principles of solid mechanics. A weighted regression analysis was performed with the “exact” yield surface data to obtain the specific coefficients of three terms in the approximate yield surface equation. These coefficients were calculated to determine the “best” yield surface equation for a given cross section geometry. Given that the exact yield surface shall have zero percentage of concavity, this investigation evaluated the resulting coefficient of determination (