3 resultados para safe system

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The US penitentiary at Lewisburg, Pennsylvania, was retrofitted in 2008 to offer the country’s first federal Special Management Unit (SMU) program of its kind. This model SMU is designed for federal inmates from around the country identified as the most intractably troublesome, and features double-celling of inmates in tiny spaces, in 23-hour or 24-hour a day lockdown, requiring them to pass through a two-year program of readjustment. These spatial tactics, and the philosophy of punishment underlying them, contrast with the modern reform ideals upon which the prison was designed and built in 1932. The SMU represents the latest punitive phase in American penology, one that neither simply eliminates men as in the premodern spectacle, nor creates the docile, rehabilitated bodies of the modern panopticon; rather, it is a late-modern structure that produces only fear, terror, violence, and death. This SMU represents the latest of the late-modern prisons, similar to other supermax facilities in the US but offering its own unique system of punishment as well. While the prison exists within the system of American law and jurisprudence, it also manifests features of Agamben’s lawless, camp-like space that emerges during a state of exception, exempt from outside scrutiny with inmate treatment typically beyond the scope of the law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The US penitentiary at Lewisburg, Pennsylvania, was retrofitted in 2008 to offer the country's first federal Special Management Unit (SMU) program of its kind. This model SMU is designed for federal inmates from around the country identified as the most intractably troublesome, and features double-celling of inmates in tiny spaces, in 23-hour or 24-hour a day lockdown, requiring them to pass through a two-year program of readjustment. These spatial tactics, and the philosophy of punishment underlying them, contrast with the modern reform ideals upon which the prison was designed and built in 1932. The SMU represents the latest punitive phase in American penology, one that neither simply eliminates men as in the premodern spectacle, nor creates the docile, rehabilitated bodies of the modern panopticon; rather, it is a late-modern structure that produces only fear, terror, violence, and death. This SMU represents the latest of the late-modern prisons, similar to other supermax facilities in the US but offering its own unique system of punishment as well. While the prison exists within the system of American law and jurisprudence, it also manifests features of Agamben's lawless, camp-like space that emerges during a state of exception, exempt from outside scrutiny with inmate treatment typically beyond the scope of the law

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studying liquid fuel combustion is necessary to better design combustion systems. Through more efficient combustors and alternative fuels, it is possible to reduce greenhouse gases and harmful emissions. In particular, coal-derived and Fischer-Tropsch liquid fuels are of interest because, in addition to producing fewer emissions, they have the potential to drastically reduce the United States' dependence on foreign oil. Major academic research institutions like the Pennsylvania State University perform cutting-edge research in many areas of combustion. The Combustion Research Laboratory (CRL) at Bucknell University is striving to develop the necessary equipment to be capable of both independent and collaborative research efforts with Penn State and in the process, advance the CRL to the forefront of combustion studies. The focus of this thesis is to advance the capabilities of the Combustion Research Lab at Bucknell. Specifically, this was accomplished through a revision to a previously designed liquid fuel injector, and through the design and installation of a laser extinction system for the measurement of soot produced during combustion. The previous liquid fuel injector with a 0.005" hole did not behave as expected. Through spray testing the 0.005" injector with water, it was determined that experimental errors were made in the original pressure testing of the injector. Using data from the spray testing experiment, new theoretical hole sizes of the injector were calculated. New injectors with 0.007" and 0.0085" orifices were fabricated and subsequently tested to qualitatively validate their behavior. The injectors were installed in the combustion rig in the CRL and hot-fire tested with liquid heptane. The 0.0085" injector yielded a manageable fuel pressure and produced a broad flame. A laser extinction system was designed and installed in the CRL. This involved the fabrication of a number of custom-designed parts and the specification of laser extinction equipment for purchase. A standard operating procedure for the laser extinction system was developed to provide a consistent, safe method for measuring soot formation during combustion.