2 resultados para renewable energy systems
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Solar energy is the most abundant persistent energy resource. It is also an intermittent one available for only a fraction of each day while the demand for electric power never ceases. To produce a significant amount of power at the utility scale, electricity generated from solar energy must be dispatchable and able to be supplied in response to variations in demand. This requires energy storage that serves to decouple the intermittent solar resource from the load and enables around-the-clock power production from solar energy. Practically, solar energy storage technologies must be efficient as any energy loss results in an increase in the amount of required collection hardware, the largest cost in a solar electric power system. Storing solar energy as heat has been shown to be an efficient, scalable, and relatively low-cost approach to providing dispatchable solar electricity. Concentrating solar power systems that include thermal energy storage (TES) use mirrors to focus sunlight onto a heat exchanger where it is converted to thermal energy that is carried away by a heat transfer fluid and used to drive a conventional thermal power cycle (e.g., steam power plant), or stored for later use. Several approaches to TES have been developed and can generally be categorized as either thermophysical (wherein energy is stored in a hot fluid or solid medium or by causing a phase change that can later be reversed to release heat) or thermochemical (in which energy is stored in chemical bonds requiring two or more reversible chemical reactions).
Resumo:
Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.