2 resultados para real-time pro-cessing
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Electric power grids throughout the world suffer from serious inefficiencies associated with under-utilization due to demand patterns, engineering design and load following approaches in use today. These grids consume much of the world’s energy and represent a large carbon footprint. From material utilization perspectives significant hardware is manufactured and installed for this infrastructure often to be used at less than 20-40% of its operational capacity for most of its lifetime. These inefficiencies lead engineers to require additional grid support and conventional generation capacity additions when renewable technologies (such as solar and wind) and electric vehicles are to be added to the utility demand/supply mix. Using actual data from the PJM [PJM 2009] the work shows that consumer load management, real time price signals, sensors and intelligent demand/supply control offer a compelling path forward to increase the efficient utilization and carbon footprint reduction of the world’s grids. Underutilization factors from many distribution companies indicate that distribution feeders are often operated at only 70-80% of their peak capacity for a few hours per year, and on average are loaded to less than 30-40% of their capability. By creating strong societal connections between consumers and energy providers technology can radically change this situation. Intelligent deployment of smart sensors, smart electric vehicles, consumer-based load management technology very high saturations of intermittent renewable energy supplies can be effectively controlled and dispatched to increase the levels of utilization of existing utility distribution, substation, transmission, and generation equipment. The strengthening of these technology, society and consumer relationships requires rapid dissemination of knowledge (real time prices, costs & benefit sharing, demand response requirements) in order to incentivize behaviors that can increase the effective use of technological equipment that represents one of the largest capital assets modern society has created.
Resumo:
Telomere length measurement has been proposed as a promising tool to estimate the age of individuals in natural populations. We used real-time quantitative PCR (qPCR) to measure relative telomere length in four tissues (brain, kidney, liver and muscle) of European hake (Merluccius merluccius) in different groups based upon body length an otolith age estimate. We observed a high level of inter-individual differences in the measurements of relative telomere length in hakes of similar age and body length groups. The results of qPCR analysis showed a great variability in all measures and a lack of repeatability and reproducibility with significant statistical differences in the results of the different assays. The paper discusses the technical reasons for the variability in qPCR obtained in this work and by other authors.