3 resultados para qualitative and quantitative methods

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2011, researchers at Bucknell University and Illinois Wesleyan University compared the search efficacy of Serial Solutions Summon, EBSCO Discovery Service, Google Scholar and conventional library databases. Using a mixed-methods approach, qualitative and quantitative data was gathered on students’ usage of these tools. Regardless of the search system, students exhibited a marked inability to effectively evaluate sources and a heavy reliance on default search settings. On the quantitative benchmarks measured by this study, the EBSCO Discovery Service tool outperformed the other search systems in almost every category. This article describes these results and makes recommendations for libraries considering these tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a seller who owns two capacity-constrained resources and markets two products (components) corresponding to these resources as well as a bundle comprising the two components. In an environment where all customers agree that one of the two components is of higher quality than the other and that the bundle is of the highest quality, we derive the seller's optimal bundling strategy. We demonstrate that the optimal solution depends on the absolute and relative availabilities of the two resources as well as upon the extent of subadditivity of the quality of the products. The possible strategies that can arise as equilibrium behavior include a pure components strategy, a partial- or full-spectrum mixed bundling strategy, and a pure bundling strategy, where the latter strategy is optimal when capacities are unconstrained. These conclusions are contrary to findings in the prior literature on bundling that demonstrated the unambiguous dominance of the full-spectrum mixed bundling strategy. Thus, our work expands the frontier of bundling to an environment with vertically differentiated components and limited resources. We also explore how the bundling strategies change as we introduce an element of horizontal differentiation wherein different types of customers value the available components differently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clay minerals have a fundamental importance in many processes in soils and sediments such as the bioavailability of nutrients, water retention, the adsorption of common pollutants, and the formation of an impermeable barrier upon swelling. Many of the properties of clay minerals are due to the unique environment present at the clay mineral/water interface. Traditional techniques such as X-ray diffraction (XRD) and absorption isotherms have provided a wealth of information about this interface but have suffered from limitations. The methods and results presented herein are designed to yield new experimental information about the clay mineral/water interface.A new method of studying the swelling dynamics of clay minerals was developed using in situ atomic force microscopy (AFM). The preliminary results presented here demonstrate that this technique allows one to study individual clay mineral unit layers, explore the natural heterogeneities of samples, and monitor swelling dynamics of clay minerals in real time. Cation exchange experiments were conducted monitoring the swelling change of individual nontronite quasi-crystals as the chemical composition of the surrounding environment was manipulated several times. A proof of concept study has shown that the changes in swelling are from the exchange of interlayer cations and not from the mechanical force of replacing the solution in the fluid cell. A series of attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR) experiments were performed to gain a better understanding of the organization of water within the interlayer region of two Fe-bearing clay minerals. These experiments made use of the Subtractive Kramers-Kronig (SKK) Transform and the calculation of difference spectra to obtain information about interfacial water hidden within the absorption bands of bulk water. The results indicate that the reduction of structural iron disrupts the organization of water around a strongly hydrated cation such as sodium as the cation transitions from an outer-sphere complex with the mineral surface to an inner-sphere complex. In the case of a less strongly hydrated cation such as potassium, reduction of structural iron actually increases the ordering of water molecules at the mineral surface. These effects were only noticed with the reduction of iron in the tetrahedral sheet close to the basal surface where the increased charge density is localized closer to the cations in the interlayer.