2 resultados para positron emission tomography (PET)
em Bucknell University Digital Commons - Pensilvania - USA
When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies
Resumo:
The present study used positron emission tomography (PET) to examine the cerebral activity pattern associated with auditory imagery forfamiliar tunes. Subjects either imagined the continuation of nonverbaltunes cued by their first few notes, listened to a short sequence of notesas a control task, or listened and then reimagined that short sequence. Subtraction of the activation in the control task from that in the real-tune imagery task revealed primarily right-sided activation in frontal and superior temporal regions, plus supplementary motor area(SMA). Isolating retrieval of the real tunes by subtracting activation in the reimagine task from that in the real-tune imagery task revealedactivation primarily in right frontal areas and right superior temporal gyrus. Subtraction of activation in the control condition from that in the reimagine condition, intended to capture imagery of unfamiliarsequences, revealed activation in SMA, plus some left frontal regions. We conclude that areas of right auditory association cortex, together with right and left frontal cortices, are implicated in imagery for familiartunes, in accord with previous behavioral, lesion and PET data. Retrieval from musical semantic memory is mediated by structures in the right frontal lobe, in contrast to results from previous studies implicating left frontal areas for all semantic retrieval. The SMA seems to be involved specifically in image generation, implicating a motor code in this process.
When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies
Resumo:
The present study used positron emission tomography (PET) to examine the cerebral activity pattern associated with auditory imagery for familiar tunes. Subjects either imagined the continuation of nonverbal tunes cued by their first few notes, listened to a short sequence of notes as a control task, or listened and then reimagined that short sequence. Subtraction of the activation in the control task from that in the real-tune imagery task revealed primarily right-sided activation in frontal and superior temporal regions, plus supplementary motor area (SMA). Isolating retrieval of the real tunes by subtracting activation in the reimagine task from that in the real-tune imagery task revealed activation primarily in right frontal areas and right superior temporal gyrus. Subtraction of activation in the control condition from that in the reimagine condition, intended to capture imagery of unfamiliar sequences, revealed activation in SMA, plus some left frontal regions. We conclude that areas of right auditory association cortex, together with right and left frontal cortices, are implicated in imagery for familiar tunes, in accord with previous behavioral, lesion and PET data. Retrieval from musical semantic memory is mediated by structures in the right frontal lobe, in contrast to results from previous studies implicating left frontal areas for all semantic retrieval. The SMA seems to be involved specifically in image generation, implicating a motor code in this process.