3 resultados para order of magnitude

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron transfer cross sections have been measured for reactions of Ar2+ ions with Ar, N2, O2, CO2, CH4 and C2H6. Time-of-flight techniques have been used to measure both fast neutral Ar0 and fast Ar+ products from single- and double-electron transfer processes involving Ar2+ ions with 4.0 to 7.0 keV impact energies. Incident Ar2+ ions have produced by controlled electron impact ionisation of argon atoms. Reactions have been examined as a function of ionising electron energy and cross sections determined for ground state Ar2+(3P) ions. Charge transfer cross sections have been determined to be in the range of 3*10-16 cm2 for the systems examined. Double-electron transfer cross sections are the same order of magnitude as those measured for the corresponding single-electron transfer reactions. The state distribution of the reactant ion beam has been estimated and electron transfer cross sections obtained for single- and double-electron transfer reactions of metastable Ar2+ions. The magnitudes of electron transfer cross sections in individual systems are similar for both ground and metastable state Ar2+ reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vibrational excitation of CO2 by a fast-moving O atom followed by infrared emission from the vibrationally excited CO2 has been shown to be an important cooling mechanism in the upper atmospheresof Venus, Earth and Mars. We are trying to determine more precisely the efficiency (rate coefficient) of the CO2-O vibrational energy transfer. For experimental ease the reverse reaction is used, i.e. collision of a vibrationally excited CO2 with atomic O, where we are able to convert to the atmospherically relevant reaction via a known equilibrium constant. The goal of this experiment was to measure the magnitudes of rate coefficients for vibrational energy states above the first excited state, a bending mode in CO2. An isotope of CO2, 13CO2, was used for experimental ease. The rate coefficients for given vibrational energy transfers in 13CO2 are not significantly different from 12CO2 at this level of precision. A slow-flowing gas mixture was flowed through a reaction cell: 13CO2 (vibrational specie of interest), O3(atomic O source), and Ar (bath gas). Transient diode laser absorption spectroscopy was used to monitor thechanging absorption of certain vibrational modes of 13CO2 after a UV pulse from a Nd:YAG laser was fired. Ozone absorbed the UV pulse in a process which vibrationally excited 13CO2 and liberated atomic O.Transient absorption signals were obtained by tuning the diode laser frequency to an appropriate ν3 transition and monitoring the population as a function of time following the Nd:YAG pulse. Transient absorption curves were obtained for various O atom concentrations to determine the rate coefficient of interest. Therotational states of the transitions used for detection were difficult to identify, though their short reequilibration timescale made the identification irrelevant for vibrational energy transfer measurements. The rate coefficient for quenching of the (1000) state was found to be (4 ± 8) x 10-12 cm3 s-1 which is the same order of magnitude as the lowest-energy bend-excited mode: (1.8 ± 0.3) x 10-12 cm3 s-1. More data is necessary before it can be certain that the numerical difference between the two is real.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment plants that operate either thermophilic or mesophilic anaerobic digesters with centrifugal dewatering processes have consistently observed densities of fecal coliform and Escherichia coli, both indicator bacteria, that decrease during digestion but then increase after dewatering and storage. The increases have been characterized as two separate phenomena to explain this observation: 1) “Sudden Increase,” or SI, which is defined as the increase that occurs immediately after dewatering and 2) “regrowth,” which is defined as an increase during storage of cake samples over a period of hours or days. The SI observation appears to be more prevalent with biosolids that are generated with thermophilic processes and dewatered by centrifugation. Both thermophilic and mesophilic digesters with centrifuge dewatering processes have observed the regrowth phenomena. This research hypothesizes that the SI phenomenon is due to the presence of viable nonculturable (VNC) bacteria that are reactivated during dewatering. In other words, the bacteria were always present but were not enumerated by standard culturing methods (SCM). Analysis of the E. coli density in thermally treated solids by SCMs and quantitative real-time polymerase chain reaction (qPCR) indicated that E. coli densities are often underestimated by SCM. When analyzed with qPCR, the E. coli density after digestion can be 4-5 orders of magnitude greater than the non-detect levels identified by SCMs, which supports the non-culturable hypothesis. The VNC state describes a condition where bacteria are alive but unable to sustain the metabolic process needed for cellular division. Supplements added to culturing media were investigated to determine if the resuscitation of VNC bacteria could be enhanced. The autoinducer molecules Nhexanoyl- L-Homoserine lactone (C6-HSL), 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo- C8-HSL), and norepinephrine were unable to induce the resuscitation of VNC E. coli. Additional sampling was performed to determine if autoinducer molecules, peroxides, or other as of yet unknown inhibitory agents and toxins could be removed from biosolids during SCM. Culture media supplemented with the peroxide degrading compounds catalase, α-ketoglutaric acid, and sodium pyruvate was unable to resuscitate non-culturable E. coli. The additions of bentonite and exponential growth phase E. coli cell-free supernatant to culturing media were also unable to increase the culturability of E. coli. To remove inhibitory agents and toxins, a cell washing technique was employed prior to performing SCM; however, this cell washing technique may have increased cellular stresses that inhibited resuscitation since cell densities decreased. A novel laboratory-scale dewatering process was also investigated to determine if the SI and regrowth phenomena observed in full-scale centrifugal dewatering could be mimicked in the laboratory using a lab shearing device. Fecal coliform and E. coli densities in laboratory prepared cake samples were observed to be an order of magnitude higher than full-scale dewatered cakes. Additionally, the laboratory-scale dewatering process was able to resuscitate fecal coliforms and E. coli in stored sludge such that the density increased by 4-5 orders of magnitude from nondetect values. Lastly, the addition of aluminum sulfate during centrifuge dewatering at a full-scale utility produced an increased regrowth of fecal coliforms and E. coli that was sustained for 5 days.