4 resultados para nucleotides

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full geometry optimizations using the PM3, AM1, 3-21G∗/HF and 6-31G∗/HF levels of theory were conducted on the syn and anti conformations of cyclic3′,5′-adenosine monophosphate (cAMP). Comparison of the anti crystal structures with the semiempirical and ab initio results revealed that the ab initio results agree well with the experimental results. The results of semiempirical calculations are in qualitative agreement with experimental and ab initio values, with the exception of the glycosyl torsion angle for the anti conformer. Sugar puckering, which is not handled properly by semiempirical methods for unconstrained sugars, nucleosides, nucleotides and nucleotide base pairs, is modeled reasonably well by the semiempirical methods for cAMP. This improvement results from the constraints introduced by the cyclization of AMP to form the phosphodiester.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The supermolecule approach has been used to model the hydration of cyclic 3‘,5‘-adenosine monophosphate, cAMP. Model building combined with PM3 optimizations predict that the anti conformer of cAMP is capable of hydrogen bonding to an additional solvent water molecule compared to the syn conformer. The addition of one water to the syn superstructure with concurrent rotation of the base about the glycosyl bond to form the anti superstructure leads to an additional enthalpy of stabilization of approximately −6 kcal/mol at the PM3 level. This specific solute−solvent interaction is an example of a large solvent effect, as the method predicts that cAMP has a conformational preference for the anti isomer in solution. This conformational preference results from a change in the number of specific solute−solvent interactions in this system. This prediction could be tested by NMR techniques. The number of waters predicted to be in the first hydration sphere around cAMP is in agreement with the results of hydration studies of nucleotides in DNA. In addition, the detailed picture of solvation about this cyclic nucleotide is in agreement with infrared experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of the pm3 semiempirical quantum mechanical method to reproduce hydrogen bonding in nucleotide base pairs was assessed. Results of pm3 calculations on the nucleotides 2′-deoxyadenosine 5′-monophosphate (pdA), 2′-deoxyguanosine 5′-monophosphate (pdG), 2′-deoxycytidine 5′-monophosphate (pdC), and 2′-deoxythymidine 5′-monophosphate (pdT) and the base pairs pdA–pdT, pdG–pdC, and pdG(syn)–pdC are presented and discussed. The pm3 method is the first of the parameterized nddo quantum mechanical models with any ability to reproduce hydrogen bonding between nucleotide base pairs. Intermolecular hydrogen bond lengths between nucleotides displaying Watson–Crick base pairing are 0.1–0.2 Å less than experimental results. Nucleotide bond distances, bond angles, and torsion angles about the glycosyl bond (χ), the C4′C5′ bond (γ), and the C5′O5′ bond (β) agree with experimental results. There are many possible conformations of nucleotides. pm3 calculations reveal that many of the most stable conformations are stabilized by intramolecular CHO hydrogen bonds. These interactions disrupt the usual sugar puckering. The stacking interactions of a dT–pdA duplex are examined at different levels of gradient optimization. The intramolecular hydrogen bonds found in the nucleotide base pairs disappear in the duplex, as a result of the additional constraints on the phosphate group when part of a DNA backbone. Sugar puckering is reproduced by the pm3 method for the four bases in the dT–pdA duplex. pm3 underestimates the attractive stacking interactions of base pairs in a B-DNA helical conformation. The performance of the pm3 method implemented in SPARTAN is contrasted with that implemented in MOPAC. At present, accurate ab initio calculations are too timeconsuming to be of practical use, and molecular mechanics methods cannot be used to determine quantum mechanical properties such as reaction-path calculations, transition-state structures, and activation energies. The pm3 method should be used with extreme caution for examination of small DNA systems. Future parameterizations of semiempirical methods should incorporate base stacking interactions into the parameterization data set to enhance the ability of these methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of cheaper and faster DNA sequencing technologies, assembly methods have greatly changed. Instead of outputting reads that are thousands of base pairs long, new sequencers parallelize the task by producing read lengths between 35 and 400 base pairs. Reconstructing an organism’s genome from these millions of reads is a computationally expensive task. Our algorithm solves this problem by organizing and indexing the reads using n-grams, which are short, fixed-length DNA sequences of length n. These n-grams are used to efficiently locate putative read joins, thereby eliminating the need to perform an exhaustive search over all possible read pairs. Our goal was develop a novel n-gram method for the assembly of genomes from next-generation sequencers. Specifically, a probabilistic, iterative approach was utilized to determine the most likely reads to join through development of a new metric that models the probability of any two arbitrary reads being joined together. Tests were run using simulated short read data based on randomly created genomes ranging in lengths from 10,000 to 100,000 nucleotides with 16 to 20x coverage. We were able to successfully re-assemble entire genomes up to 100,000 nucleotides in length.