2 resultados para n(g) nitroarginine methyl ester
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, ∼4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody-based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl-ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.
Resumo:
The potential energy surface for the first step of the alkaline hydrolysis of methyl acetate was explored by a variety of methods. The conformational search routine within SPARTAN was used to determine the lowest energy am1 and pm3 structures for the anionic tetrahedral intermediate. Ab initio single point and geometry optimization calculations were performed to determine the lowest energy conformer, and the linear synchronous transition (lst) method was used to provide an initial structure for transition state optimization. Transition states were obtained at the am1, pm3, 3-21G, and 3-21 + G levels of theory. These transition states were compared with the anionic tetrahedral intermediates to examine the assumption that the intermediate is a good model for the transition state. In addition, the Cramer/Truhlar sm3 solvation model was used at the semiempirical level to compare gas phase and aqueous alkaline hydrolysis of methyl acetate.