3 resultados para multi-platform development

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents two frameworks- a software framework and a hardware core manager framework- which, together, can be used to develop a processing platform using a distributed system of field-programmable gate array (FPGA) boards. The software framework providesusers with the ability to easily develop applications that exploit the processing power of FPGAs while the hardware core manager framework gives users the ability to configure and interact with multiple FPGA boards and/or hardware cores. This thesis describes the design and development of these frameworks and analyzes the performance of a system that was constructed using the frameworks. The performance analysis included measuring the effect of incorporating additional hardware components into the system and comparing the system to a software-only implementation. This work draws conclusions based on the provided results of the performance analysis and offers suggestions for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, no research has rigorously addressed the concern that local and regional procurement (LRP) of food aid could affect food prices and food price volatility in food aid source and recipient countries. We assemble spatially and temporally disaggregated data and estimate the relationship between food prices and their volatility and local food aid procurement and distribution across seven countries for several commodities. In most cases, LRP activities have no statistically significant relationship with either local price levels or food price volatility. The few exceptions underscore the importance of market monitoring. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modifications and upgrades to the hydraulic flume facility in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are described. These changes enable small-scale testing of model marine hydrokinetic(MHK) devices. The design of the experimental platform provides a controlled environment for testing of model MHK devices to determine their effect on localsubstrate. Specifically, the effects being studied are scour and erosion around a cylindrical support structure and deposition of sediment downstream from the device.