6 resultados para minimum expenditure constraint
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Preliminary detrital zircon age distributions from Mazatzal crustal province quartzite and schist exposed in the Manzano Mountains and Pedernal Hills of central New Mexico are consistent with a mixture of detritus from Mazatzal age (ca. 1650 Ma), Yavapai age (ca. 1720 Ma.), and older sources. A quartzite sample from the Blue Springs Formation in the Manzano Mountains yielding 67 concordant grain analyses shows two dominant age peaks of 1737 Ma and 1791 Ma with a minimum peak age of 1652 Ma. Quartzite and micaceous quartzite samples from near Pedernal Peak give unimodal peak ages of ca. 1695 Ma and 1738 Ma with minimum detrital zircon ages of ca. 1625 Ma and 1680 Ma, respectively. A schist sample from the southern exposures of the Pedernal Hills area gives a unimodal peak age of 1680 Ma with a minimum age of ca. 1635 Ma. Minor amounts of older detritus (>1800 Ma) possibly reflect Trans-Hudson, Wyoming, Mojave Province, and older Archean sources and aid in locating potential source terrains for these detrital zircon. The Blue Springs Formation metarhyolite from near the top of the Proterozoic section in the Manzano Mountains yields 71 concordant grains that show a preliminary U-Pb zircon crystallization age of 1621 ¿ 5 Ma, which provides a minimum age constraint for deposition in the Manzano Mountains. Normalized probability plots from this study are similar to previously reported age distributions in the Burro and San Andres Mountains in southern New Mexico and suggest that Yavapai Province age detritus was deposited and intermingled with Mazatzal Province age detritus across much of the Mazatzal crustal province in New Mexico. This data shows that the tectonic evolution of southwestern Laurentia is associated with multiple orogenic events. Regional metamorphism and deformation in the area must postdate the Mazatzal Orogeny and ca. 1610 Ma ¿ 1620 Ma rhyolite crystallization and is attributed to the Mesoproterozoic ca. 1400 ¿ 1480 Ma Picuris Orogeny.
Resumo:
Model based calibration has gained popularity in recent years as a method to optimize increasingly complex engine systems. However virtually all model based techniques are applied to steady state calibration. Transient calibration is by and large an emerging technology. An important piece of any transient calibration process is the ability to constrain the optimizer to treat the problem as a dynamic one and not as a quasi-static process. The optimized air-handling parameters corresponding to any instant of time must be achievable in a transient sense; this in turn depends on the trajectory of the same parameters over previous time instances. In this work dynamic constraint models have been proposed to translate commanded to actually achieved air-handling parameters. These models enable the optimization to be realistic in a transient sense. The air handling system has been treated as a linear second order system with PD control. Parameters for this second order system have been extracted from real transient data. The model has been shown to be the best choice relative to a list of appropriate candidates such as neural networks and first order models. The selected second order model was used in conjunction with transient emission models to predict emissions over the FTP cycle. It has been shown that emission predictions based on air-handing parameters predicted by the dynamic constraint model do not differ significantly from corresponding emissions based on measured air-handling parameters.
Resumo:
The Gaussian-3 (G3) model chemistry method has been used to calculate the relative ΔG° values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3−5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20 736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.
Resumo:
Detrital zircon and igneous zircon U-Pb ages are reported from Proterozoic metamorphic rocks in northern New Mexico. These data give new insight into the provenance and depositional age of a >3-km-thick metasedimentary succession and help resolve the timing of orogenesis within an area of overlapping accretionary orogens and thermal events related to the Proterozoic tectonic evolution of southwest Laurentia. Three samples from the Paleoproterozoic Vadito Group yield narrow, unimodal detrital zircon age spectra with peak ages near 1710 Ma. Igneous rocks that intrude the Vadito Group include the Cerro Alto metadacite, the Picuris Pueblo granite, and the Penasco quartz monzonite and yield crystallization ages of 1710 +/- 10 Ma, 1699 +/- 3 Ma, and 1450 +/- 10 Ma, respectively. Within the overlying Hondo Group, a metamorphosed tuff layer from the Pilar Formation yields an age of 1488 +/- 6 Ma and represents the first direct depositional age constraint on any part of the Proterozoic metasedimentary succession in northern New Mexico. Detrital zircon from the overlying Piedra Lumbre Formation yield a minimum age peak of 1475 Ma, and similar to 60 grains (similar to 25%) yield ages between 1500 Ma and 1600 Ma, possibly representing non-Laurentian detritus originating from Australia and/or Antarctica. Detrital zircons from the basal metaconglomerate and the middle quartzite member of the Marquenas Formation yield minimum age peaks of 1472 Ma and 1471 Ma, consistent with earlier results. We interpret the onset of ca. 1490-1450 Ma deposition followed by tectonic burial, regional Al2SiO5 triple-point metamorphism, and ductile deformation at depths of 12-18 km to reflect a Mesoproterozoic contractional orogenic event, possibly related to the final suturing of the Mazatzal crustal province to the southern margin of Laurentia. We propose to call this event the Picuris orogeny.
Resumo:
Data from the Institutional Population Component of the National Medical Expenditure Survey were used to provide national estimates of annual mental health service provision and use in nursing homes. In addition, the relationship between service provision and setting characteristics such as ownership, size, Medicaid certification, and chain status was examined. Although more than three quarters of residents with a mental disorder resided at a nursing home that provided counseling services, fewer than one fifth actually received any mental health services within the year.